虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

铜芯电缆线

  • 高频开关变压器的设计及软件

    AC/DC适配器(ADAPTER)高频电子变压器的设计有很多制约条件,比如空间体积、热的问题、转换器的效率、电磁干扰、PWM控制IC、性价比等。所以磁心选用受到一定的限制,不像一般资料中介绍的满足功率容量即可,选择的余地不大。所以本文不讲解具体的磁心选择,仅利用计算软件对磁心的功率容量进行校验。目前与NOTEBOOK和LCD配套的中高档ADAPTER工作频率在60KHz~100KHz左右。变压器的绕组已用上了三重绝缘线,再要做小变压器已经有难度。我们知道小型化开关变压器有两种方法:一、提高开关频率,带来的问题是对EMI的控制有一定难度;二、选用更高饱和磁通密度的磁心材料,如TDK公司的PC95和PE33 见表(1)。如果在100℃时Bsat能达到450mT~500mT,那么我们在设计开关变压器时就能使用更少的圈数,减少铜损,同时又能提高初级绕组的电感量,降低峰值电流,减少开关管的能量损耗,从而减少开关变压器的体积,进一步地实现ADAPTER的小型化。

    标签: 高频开关 变压器 软件

    上传时间: 2013-08-04

    上传用户:bjgaofei

  • PCB经验交流

    介绍了PCB在最后敷铜的一些经验,大家看看互相交流写,此经验来自网络。

    标签: PCB 经验 交流

    上传时间: 2013-04-24

    上传用户:liuxiaojie

  • picc9.8编译器

    PIC单片机里C编译器最高版本,不过要和微芯公司的汇编器一起使用哦!

    标签: picc 9.8 编译器

    上传时间: 2013-08-02

    上传用户:黄华强

  • Protel DXP高级编辑技巧

    Protel DXP 提供了一些高级的编辑技巧用于满足设计的需要,主要包括放置文字、放置焊盘、放置过孔和放置填充等组件放置,以及包地、补泪滴、敷铜等 PCB 编辑技巧。生成Gerber文件和钻孔文件的一般步骤 。

    标签: Protel DXP 编辑

    上传时间: 2013-04-24

    上传用户:Andy123456

  • 基于FPGA 的出租车计价器系统设计

    摘要: 本文介绍了基于FPGA 的出租车计价器系统的功能、设计思想和实现, 该设计采用模块化自上而下的层次化设计,顶\r\n层设计有5 个模块,各模块中子模块采用VHDL 或图形法设计。在Max+plusⅡ下实现编译、仿真等,最后成功下载到FPGA 芯\r\n片中。完成了可预置自动计费、自动计程、计时、空车显示等多功能计价器。由于FPGA 具有高密度、可编程及有强大的软件\r\n支持等特点,所以该设计具有功能强、灵活和可靠性高等特点,具有一定的实用价值。

    标签: FPGA 出租车计价器 系统设计

    上传时间: 2013-08-09

    上传用户:Zxcvbnm

  • CAM350 8.7.1使用说明

    CAM350 为PCB 设计和PCB 生产提供了相应的工具(CAM350 for PCB Designers 和CAM350 for CAM Engineers),很容易地把PCB设计和PCB生产融合起来。CAM350 v8.7的目标是在PCB设计和PCB制造之间架起一座桥梁随着如今电子产品的朝着小体积、高速度、低价格的趋势发展,导致了设计越来越复杂,这就要求精确地把设计数据转换到PCB生产加工中去。CAM350为您提供了从PCB设计到生产制程的完整流程,从PCB设计数据到成功的PCB生产的转化将变得高效和简化。基于PCB制造过程,CAM350为PCB设计和PCB生产提供了相应的工具(CAM350 for PCB Designers和CAM350 for CAM Engineers),很容易地把PCB设计和PCB生产融合起来。平滑流畅地转换完整的工程设计意图到PCB生产中提高PCB设计的可生产性,成就成功的电子产品为PCB设计和制造双方提供有价值的桥梁作用CAM350是一款独特、功能强大、健全的电子工业应用软件。DOWNSTREAM开发了最初的基于PCB设计平台的CAM350,到基于整个生产过程的CAM350并且持续下去。CAM350功能强大,应用广泛,一直以来它的信誉和性能都是无与伦比的。 CAM350PCB设计的可制造性分析和优化工具今天的PCB 设计和制造人员始终处于一种强大的压力之下,他们需要面对业界不断缩短将产品推向市场的时间、品质和成本开销的问题。在48 小时,甚至在24 小时内完成工作更是很平常的事,而产品的复杂程度却在日益增加,产品的生命周期也越来越短,因此,设计人员和制造人员之间协同有效工作的压力也随之越来越大!随着电子设备的越来越小、越来越复杂,使得致力于电子产品开发每一个人员都需要解决批量生产的问题。如果到了完成制造之后发现设计失败了,则你将错过推向市场的大好时间。所有的责任并不在于制造加工人员,而是这个项目的全体人员。多年的实践已经证明了,你需要清楚地了解到有关制造加工方面的需求是什么,有什么方面的限制,在PCB设计阶段或之后的处理过程是什么。为了在制造加工阶段能够协同工作,你需要在设计和制造之间建立一个有机的联系桥梁。你应该始终保持清醒的头脑,记住从一开始,你的设计就应该是容易制造并能够取得成功的。CAM350 在设计领域是一个物有所值的制造分析工具。CAM350 能够满足你在制造加工方面的需求,如果你是一个设计人员,你能够建立你的设计,将任务完成后提交给产品开发过程中的下一步工序。现在采用CAM350,你能够处理面向制造方面的一些问题,进行一些简单地处理,但是对于PCB设计来说是非常有效的,这就被成为"可制造性(Manufacturable)"。可制造性设计(Designing for Fabrication)使用DFF Audit,你能够确保你的设计中不会包含任何制造规则方面的冲突(Manufacturing Rule Violations)。DFF Audit 将执行超过80 种裸板分析检查,包括制造、丝印、电源和地、信号层、钻孔、阻焊等等。建立一种全新的具有艺术特征的Latium 结构,运行DFF Audit 仅仅需要几分钟的时间,并具有很高的精度。在提交PCB去加工制造之间,就能够定位、标识并立刻修改所有的冲突,而不是在PCB板制造加工之后。DFF Audit 将自动地检查酸角(acid traps)、阻焊条(soldermask slivers)、铜条(copper slivers)、残缺热焊盘(starved thermals)、焊锡搭桥(soldermask coverage)等等。它将能够确保阻焊数据的产生是根据一定安全间距,确保没有潜在的焊锡搭桥的条件、解决酸角(Acid Traps)的问题,避免在任何制造车间的CAM部门产生加工瓶颈。

    标签: CAM 350 使用说明

    上传时间: 2013-11-23

    上传用户:四只眼

  • [数字信号处理及应用].王华奎.文字版

    内容简介 本书以数字信号处理基础内容为主,同时也介绍了有关数字信号处理实现与应用。书中 以主要篇幅讨论了离散时间信号与系统的基本概念,离散傅里叶变换及其快速算法,数字滤 波器的结构与各种设计方法。这是数字信号处理中的经典内容,也是进一步学习和掌握更多 信号处理理论的基础。为便于数字信号处理系统的设计与开发,书中介绍了数字信号处理芯 片的原理及其开发工具以及应用实例。 本书概念清晰,说明详细,深入浅出,易于理解,具有丰富的例题和习题,便于自学。 本书可作为高等院校理工科类相关专业本科生教材,也可作为有关工程技术人员的自学 参考书。

    标签: 数字信号处理

    上传时间: 2013-10-24

    上传用户:chaisz

  • 如何计算具有狭窄气隙的圆形转子电机中的绕组感应

    本文的目的在于,介绍如何计算具有狭窄气隙的圆形转子电机中的绕组感应。我们仅处理理想化的气隙磁场,不考虑槽、外部周边或倾斜电抗。但我们将考察绕组磁动势(MMF)的空间谐频。 在图1中,给出了12槽定子的轴截面示意图。实际上,所显示的是薄钢片的形状,或用于构成磁路的层片。铁芯由薄片构成,以控制涡流电流损耗。厚度将根据工作频率而变,在60Hz的电机中(大体积电机,工业用)层片的厚度典型为.014”(.355毫米)。它们堆叠在一起,以构成具有恰当长度的磁路。绕组位于该结构的槽内。 在图1中,给出了带有齿结构的梯形槽,在大部分长度方向上具有近乎均匀的截面,靠近气隙处较宽。齿端与相对狭窄的槽凹陷区域结合在一起,通过改善气隙场的均匀性、增加气隙磁导、将绕组保持在槽中,有助于控制很多电机转子中的寄生损耗。请注意,对于具有名为“形式缠绕”线圈的大型电机,它具有直边矩形槽,以及非均匀截面齿。下面的介绍针对两类电机。

    标签: 如何计算 转子 电机 绕组

    上传时间: 2013-10-13

    上传用户:我干你啊

  • 时钟分相技术应用

    摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。 关键词: 时钟分相技术; 应用 中图分类号: TN 79  文献标识码:A   文章编号: 025820934 (2000) 0620437203 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的 性能。尤其现代电子系统对性能的越来越高的要求, 迫使我们集中更多的注意力在更高频率、 更高精度的时钟设计上面。但随着系统时钟频率的升高。我们的系统设计将面临一系列的问 题。 1) 时钟的快速电平切换将给电路带来的串扰(Crosstalk) 和其他的噪声。 2) 高速的时钟对电路板的设计提出了更高的要求: 我们应引入传输线(T ransm ission L ine) 模型, 并在信号的匹配上有更多的考虑。 3) 在系统时钟高于100MHz 的情况下, 应使用高速芯片来达到所需的速度, 如ECL 芯 片, 但这种芯片一般功耗很大, 再加上匹配电阻增加的功耗, 使整个系统所需要的电流增大, 发 热量增多, 对系统的稳定性和集成度有不利的影响。 4) 高频时钟相应的电磁辐射(EM I) 比较严重。 所以在高速数字系统设计中对高频时钟信号的处理应格外慎重, 尽量减少电路中高频信 号的成分, 这里介绍一种很好的解决方法, 即利用时钟分相技术, 以低频的时钟实现高频的处 理。 1 时钟分相技术 我们知道, 时钟信号的一个周期按相位来分, 可以分为360°。所谓时钟分相技术, 就是把 时钟周期的多个相位都加以利用, 以达到更高的时间分辨。在通常的设计中, 我们只用到时钟 的上升沿(0 相位) , 如果把时钟的下降沿(180°相位) 也加以利用, 系统的时间分辨能力就可以 提高一倍(如图1a 所示)。同理, 将时钟分为4 个相位(0°、90°、180°和270°) , 系统的时间分辨就 可以提高为原来的4 倍(如图1b 所示)。 以前也有人尝试过用专门的延迟线或逻辑门延时来达到时钟分相的目的。用这种方法产生的相位差不够准确, 而且引起的时间偏移(Skew ) 和抖动 (J itters) 比较大, 无法实现高精度的时间分辨。 近年来半导体技术的发展, 使高质量的分相功能在一 片芯片内实现成为可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能优异的时钟 芯片。这些芯片的出现, 大大促进了时钟分相技术在实际电 路中的应用。我们在这方面作了一些尝试性的工作: 要获得 良好的时间性能, 必须确保分相时钟的Skew 和J itters 都 比较小。因此在我们的设计中, 通常用一个低频、高精度的 晶体作为时钟源, 将这个低频时钟通过一个锁相环(PLL ) , 获得一个较高频率的、比较纯净的时钟, 对这个时钟进行分相, 就可获得高稳定、低抖动的分 相时钟。 这部分电路在实际运用中获得了很好的效果。下面以应用的实例加以说明。2 应用实例 2. 1 应用在接入网中 在通讯系统中, 由于要减少传输 上的硬件开销, 一般以串行模式传输 图3 时钟分为4 个相位 数据, 与其同步的时钟信号并不传输。 但本地接收到数据时, 为了准确地获取 数据, 必须得到数据时钟, 即要获取与数 据同步的时钟信号。在接入网中, 数据传 输的结构如图2 所示。 数据以68MBös 的速率传输, 即每 个bit 占有14. 7ns 的宽度, 在每个数据 帧的开头有一个用于同步检测的头部信息。我们要找到与它同步性好的时钟信号, 一般时间 分辨应该达到1ö4 的时钟周期。即14. 7ö 4≈ 3. 7ns, 这就是说, 系统时钟频率应在300MHz 以 上, 在这种频率下, 我们必须使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型门延迟为340p s) , 如前所述, 这样对整个系统设计带来很多的困扰。 我们在这里使用锁相环和时钟分相技术, 将一个16MHz 晶振作为时钟源, 经过锁相环 89429 升频得到68MHz 的时钟, 再经过分相芯片AMCCS4405 分成4 个相位, 如图3 所示。 我们只要从4 个相位的68MHz 时钟中选择出与数据同步性最好的一个。选择的依据是: 在每个数据帧的头部(HEAD) 都有一个8bit 的KWD (KeyWord) (如图1 所示) , 我们分别用 这4 个相位的时钟去锁存数据, 如果经某个时钟锁存后的数据在这个指定位置最先检测出这 个KWD, 就认为下一相位的时钟与数据的同步性最好(相关)。 根据这个判别原理, 我们设计了图4 所示的时钟分相选择电路。 在板上通过锁相环89429 和分相芯片S4405 获得我们所要的68MHz 4 相时钟: 用这4 个 时钟分别将输入数据进行移位, 将移位的数据与KWD 作比较, 若至少有7bit 符合, 则认为检 出了KWD。将4 路相关器的结果经过优先判选控制逻辑, 即可输出同步性最好的时钟。这里, 我们运用AMCC 公司生产的 S4405 芯片, 对68MHz 的时钟进行了4 分 相, 成功地实现了同步时钟的获取, 这部分 电路目前已实际地应用在某通讯系统的接 入网中。 2. 2 高速数据采集系统中的应用 高速、高精度的模拟- 数字变换 (ADC) 一直是高速数据采集系统的关键部 分。高速的ADC 价格昂贵, 而且系统设计 难度很高。以前就有人考虑使用多个低速 图5 分相技术应用于采集系统 ADC 和时钟分相, 用以替代高速的ADC, 但由 于时钟分相电路产生的相位不准确, 时钟的 J itters 和Skew 比较大(如前述) , 容易产生较 大的孔径晃动(Aperture J itters) , 无法达到很 好的时间分辨。 现在使用时钟分相芯片, 我们可以把分相 技术应用在高速数据采集系统中: 以4 分相后 图6 分相技术提高系统的数据采集率 的80MHz 采样时钟分别作为ADC 的 转换时钟, 对模拟信号进行采样, 如图5 所示。 在每一采集通道中, 输入信号经过 缓冲、调理, 送入ADC 进行模数转换, 采集到的数据写入存储器(M EM )。各个 采集通道采集的是同一信号, 不过采样 点依次相差90°相位。通过存储器中的数 据重组, 可以使系统时钟为80MHz 的采 集系统达到320MHz 数据采集率(如图6 所示)。 3 总结 灵活地运用时钟分相技术, 可以有效地用低频时钟实现相当于高频时钟的时间性能, 并 避免了高速数字电路设计中一些问题, 降低了系统设计的难度。

    标签: 时钟 分相 技术应用

    上传时间: 2013-12-17

    上传用户:xg262122

  • 简述PCB线宽和电流关系

      PCB线宽和电流关系公式   先计算Track的截面积,大部分PCB的铜箔厚度为35um(即 1oz)它乘上线宽就是截面积,注意换算成平方毫米。 有一个电流密度经验值,为15~25安培/平方毫米。把它称上截面积就得到通流容量。   I=KT(0.44)A(0.75), 括号里面是指数,   K为修正系数,一般覆铜线在内层时取0.024,在外层时取0.048   T为最大温升,单位为摄氏度(铜的熔点是1060℃)   A为覆铜截面积,单位为square mil.   I为容许的最大电流,单位为安培。   一般 10mil=0.010inch=0.254mm 1A , 250mil=6.35mm 8.3A ?倍数关系,与公式不符 ?  

    标签: PCB 电流

    上传时间: 2013-10-11

    上传用户:ls530720646