本文以研究嵌入式微处理器为主,自主地设计了能够运行MCS-51系列单片机指令的MCU系统。系统采用了VHDL 语言与原理框图的综合设计方法,并且在Altera公司的FPGA上通过验证。论文深入地研究了微处理器的指令系统和数据地址通路,采用VHDL 语言完成了取指单元,指令译码器单元,存储器单元和逻辑运算单元的电路模块的设计与实现;研究了控制单元的实现方法和基于全局状态机的设计理论,采用硬件描述语言完成了对各个控制线的相关设计与实现。论文通过原理示意图和示例代码的演示,着重介绍了指令译码器的实现方式,基于此种方式形成的译码电路还能够实现更为复杂的CISC指令。 本系统采用分模块的设计方式,把具有相同功能的逻辑电路集中到一个框图里,使得系统的可移植性大大地提高。系统还采用层次框图的设计方式,把明显地具有主从关系的电路放在不同的层次里,这也使得系统模块功能的可扩展性大大地增强。内部逻辑共分为数据存储器模块;程序存储器模块;时序控制模块;特殊功能寄存器模块和Core核心模块这五个部分,文中对各个模块的设计作了详细的介绍。本文在最后对已实现的部分典型指令进行了逻辑仿真测试,测试结果表明,本文所设计的MCU系统能够如预期地执行相应的指令。在指令执行的过程中,相应寄存器和总线上的值也均符合设计要求,实现了设计目标。
上传时间: 2013-05-20
上传用户:2525775
离散余弦变换(DCT)及其反变换(IDCT)在图像编解码方面应用十分广泛,至今已被JPEG、MPEG-1、MPEG-2、MPEG-4和H.26x等国际标准所采用。由于其计算量较大,软件实现往往难以满足实时处理的要求,因而在很多实际应用中需要采用硬件设计的DCT/IDCT处理电路来满足我们对处理速度的要求。本文所研究的内容就是针对图像处理应用的8×8二维DCT/IDCT处理核的硬件实现。 本文首先介绍了DCT和IDCT在图像处理中的作用和原理,详细说明了DCT变换实现图像压缩的过程,并与其它变换比较说明了用DCT变换实现图像压缩的优势。接着,分析研究了DCT的各种快速算法,总结了前人对DCT快速算法及其实现所做的研究。本文给出了两种性能、资源上有一定差异的二维DCT/IDCT的FPGA设计方案。两种方案均利用DCT的行列分离特性,采用流水线设计技术,将二维DCT/IDCT实现转化为两个一维DCT/IDCT实现。在一维DCT/IDCT设计中,根据图像处理的特点对Loeffler算法的数据流进行了优化,通过合理安排时钟周期数和简化各周期内的操作,大大缩短了关键路径的执行时间,从而提高了流水线的执行速度。最后,对所设计的DCT/IDCT处理核进行了综合和时序仿真。 结果表明,当使用Altera公司的MERCURY系列FPGA器件时,本文设计的方案一能够在116M时钟频率下正确完成8×8的二维DCT或IDCT的逻辑运算,消耗2827个逻辑单元;方案二能够在74M时钟频率下正常工作,消耗1629个逻辑单元。
上传时间: 2013-07-14
上传用户:3291976780
作为嵌入式系统核心的微处理器,是SOC不可或缺的“心脏”,微处理器的性能直接影响着整个SOC的性能。 与国际先进技术相比,我国在这一领域的研究和开发工作还相当落后,这直接影响到我国信息产业的发展。本着赶超国外先进技术,填补我国在该领域的空白以摆脱受制于国外的目的,我国很多科研单位和公司进行了自己的努力和尝试。经过几年的探索,已经有多种自主知识产权的处理器芯片完成了设计验证并逐渐进入市场化阶段。我国已结束无“芯”的历史,并向设计出更高性能处理器的目标迈进。 艾科创新微电子公司的VEGA处理器,是公司凭借自己的技术力量和科研水平设计出的一款64位高性能RSIC微处理器。该处理器基于MIPSISA构架,采用五级流水线的设计,并且使用了高性能处理器所广泛采用的虚拟内存管理技术。设计过程中采用自上而下的方法,根据其功能将其划分为取指、译码、算术逻辑运算、内存管理、流水线控制和cache控制等几个功能块,使得我们在设计中能够按照其功能和时序要求进行。 本文的首先介绍了MIPS微处理器的特点,通过对MIPS指令集和其五级流水线结构的介绍使得对VEGA的设计有了一个直观的认识。在此基础上提出了VEGA的结构划分以及主要模块的功能。作为采用虚拟内存管理技术的处理器,文章的主要部分介绍了VEGA的虚拟内存管理技术,将VEGA的内存管理单元(MMU)尤其是内部两个翻译后援缓冲(TLB)的设计作为重点给出了流水线处理器设计的方法。结束总体设计并完成仿真后,并不能代表设计的正确性,它还需要我们在实际的硬件平台上进行验证。作为论文的又一重点内容,介绍了我们在VEGA验证过程中使用到的FPGA的主要配置单元,FPGA的设计流程。VEGA的FPGA平台是一完整的计算机系统,我们利用在线调试软件XilinxChipscope对其进行了在线调试,修正其错误。 经过模块设计到最后的FPGA验证,VEGA完成了其逻辑设计,经过综合和布局布线等后端流程,VEGA采用0.18工艺流片后达到120MHz的工作频率,可在其平台上运行Windows-CE和Linux嵌入式操作系统,达到了预计的设计要求。
上传时间: 2013-07-07
上传用户:标点符号
JPEG2000是新一代的静态图像压缩标准,它相比JPEG有很多新的特性,如渐进传输和感兴趣区域编码等,因而它具有广阔的应用前景,特别是在数码相机、PDA等便携式设备中。 JPEG2000的核心主要包括小波变换和基于最优化截断点的嵌入式块编码(EBCOT)算法,其计算复杂度远远高于JPEG,完全采用软件方案实现将会占用大量的处理器时间和内存开销,而且速度较慢,实时处理的能力较差。为了推广JPEG2000在便携式产品、消费类电子产品中的应用,打开巨大的潜在市场,研究硬件实现的算法实时处理方案具有重要的应用价值。 EBCOT算法是一个两层的编码引擎,其中的上下文编码的运算量约占到总运算量的50%,是提高编码速度的关键算法之一。由于上下文编码大部分都是逻辑运算,没有复杂的数学运算,但逻辑控制流程复杂繁琐,对存储器访问频繁,采用DSP或者其他的通用处理器通过指令控制实现该算法,未能显著提高编码速度。本文采用FPGA芯片,以电路逻辑的方式来实现该算法并进行优化,在研究和分析了上下文编码算法运算特点的基础上,设计了列判断和交错存储相结合的硬件实现方案,并采用硬件描述语言Verilog在寄存器传输级描述了相应的硬件电路。通过功能仿真和逻辑综合后,所获得的上下文编码模块最大时钟频率为101MHz,且能在130ms内完成对一幅512×512灰度图像的编码,性能比Jasper软件中的实现方案提高了75%。 JPEG2000的一个重要特性是其具有渐进传输的能力,而码流组织是获得渐进传输特性的技术关键。码流组织通过在输出码流中安排数据包的先后顺序来实现渐进传输的目的。本文对JPEG2000中实现渐进传输的机制进行了分析,并研究了码流组织的算法实现。 为了对JPEG2000算法实现进行验证,本文设计了基于FPGA和ARM的验证实验平台,其中FPGA主要完成算法中运算量较大的小波变换、上下文编码和算术编码,而ARM处理器则完成码流组织、数据打包以及和PC机的通信。本文在该平台上对所设计的上下文编码算法和码流组织模块的设计进行了验证,实验结果表明本文设计的算法模块功能正确,并在一定程度上提高了编码速度。
上传时间: 2013-04-24
上传用户:独孤求源
该文进行的设计作为数控系统大课题中的一个子课题,主要研究利用PCI总线来实现对外围IO的操作,硬件上包括设计一块PCI接口卡并测试通过,软件上实现了PCI接口卡在Linux下的驱动和用软PLC来实现对外围IO的操作.该文在比较几种微机总线的基础上,为了实现数控系统高速、高精度、低功耗的要求,采用PCI总线进行设计.随着可编程逻辑器件的发展,为在一片PLD芯片内实现复杂的逻辑控制提供了条件.该文在综合比较开发PCI卡的几种方法的基础上,选择了使用FPGA来实现PCI接口卡设计.用VHDL语言对FPGA编程,采用模块化的设计方法进行设计,用状态机来控制PCI逻辑的时序.设计首先在EDA软件上仿真通过后,制作成PCI板卡并在现场调试通过.为方便所设计的PCI卡在数控系统及其它系统中应用,该文设计了PCI卡在Linux下的设备驱动程序,主要包括设备的注册与注销、与Linux内核的接口、相关的入口函数、驱动程序的编码、编译、加载与卸载等,并编写了相应的测试代码,在Linux环境下调试通过.为了解决数控系统中PLC的应用问题,该文还设计了PCI卡在软PLC中的应用.采用的软PLC软件是Linux下的MatPLC软件.在详细讨论MatPLC工作原理的基础上,设计了一个输入模块、一个输出模块和一个MatPLC配置文件.输入模块通过驱动程序从PCI卡中读取数据,传送到MatPLC内核的全局变量中,输出模块从内核全局变量读取数据并进行逻辑运算,再输出到PCI卡.将他们编译通过,并进行测试,最终实现软PLC对外围IO端口的读写.该论文受到广东省科技攻关项目[2002A1040402]、广东省科技攻关项目[2003C101002]、广州市重大科技攻关计划[2002Z1-D0051]的资助.
上传时间: 2013-07-18
上传用户:szchen2006
本文以研究嵌入式微处理器为主,自主地设计了能够运行MCS-51系列单片机指令的MCU系统。系统采用了VHDL 语言与原理框图的综合设计方法,并且在Altera公司的FPGA上通过验证。论文深入地研究了微处理器的指令系统和数据地址通路,采用VHDL 语言完成了取指单元,指令译码器单元,存储器单元和逻辑运算单元的电路模块的设计与实现;研究了控制单元的实现方法和基于全局状态机的设计理论,采用硬件描述语言完成了对各个控制线的相关设计与实现。论文通过原理示意图和示例代码的演示,着重介绍了指令译码器的实现方式,基于此种方式形成的译码电路还能够实现更为复杂的CISC指令。 本系统采用分模块的设计方式,把具有相同功能的逻辑电路集中到一个框图里,使得系统的可移植性大大地提高。系统还采用层次框图的设计方式,把明显地具有主从关系的电路放在不同的层次里,这也使得系统模块功能的可扩展性大大地增强。内部逻辑共分为数据存储器模块;程序存储器模块;时序控制模块;特殊功能寄存器模块和Core核心模块这五个部分,文中对各个模块的设计作了详细的介绍。本文在最后对已实现的部分典型指令进行了逻辑仿真测试,测试结果表明,本文所设计的MCU系统能够如预期地执行相应的指令。在指令执行的过程中,相应寄存器和总线上的值也均符合设计要求,实现了设计目标。
上传时间: 2013-06-05
上传用户:金宜
基于微处理器的数字PID控制器改变了传统模拟PID控制器参数整定不灵活的问题。但是常规微处理器容易在环境恶劣的情况下出现程序跑飞的问题,如果实现PID软算法的微处理器因为强干扰或其他原因而出现故障,会引起输出值的大幅度变化或停止响应。而FPGA的应用可以从本质上解决这个问题。因此,利用FPGA开发技术,实现智能控制器算法的芯片化,使之能够广泛的用于各种场合,具有很大的应用意义。 首先分析FPGA的内部结构特点,总结FPGA设计技术及开发流程,指出实现结构优化设计,降低设计难度,是扩展设计功能、提高芯片性能和产品性价比的关键。控制系统由四个模块组成,主要包括核心控制器模块、输入输出模块以及人机接口。其中控制器部分为系统的关键部件。在分析FPGA设计结构类型和特点的基础上,提出一种基于FPGA改进型并行结构的PID温度控制器设计方法。在PID算法与FPGA的运算器逻辑映像过程中,采用将补码的加法器代替减法器设计,增加整数运算结果的位扩展处理,进行不同数据类型的整数归一化等不同角度的处理方法融合为一体,可以有效地减少逻辑运算部件。应用Ouartus Ⅱ图形输入与Verilog HDL语言相结合设计实现了PID控制器,用Modelsim仿真验证了设计结果的正确性,用Synplify Pro进行电路综合,在Quaitus Ⅱ软件中实现布局布线,最后生成FPGA的编程文件。根据控制系统的要求,论文设计完成了12位模数AD转换器、数据显示器、按键等相关外围接口电路。 将一阶、纯滞后、大惯性电阻炉温作为控制对象,以EP1C3T144 FPGA为核心,构建PID控制系统。在采用Pt100温度传感器、分辨率为2℃、最大温度控制范围0~400℃的条件下,实验结果表明,达到无超调的稳定控制要求,为降低FPGA实现PID控制器的设计难度提供了有效的方法。
上传时间: 2013-05-24
上传用户:gyq
《单片机及接口技术》实验指导书,实验平台针对伟福仿真器,分为软件模拟部分和系统仿真部分,包括简单程序设计、循环程序设计、分支程序设计、数码转换、查表程序、算术及逻辑运算指令实现、流水灯、键盘实验、数码管实验、AD转换、DA转换、定时器等实验。
上传时间: 2013-04-24
上传用户:hakim
内容提要: MCS-96单片机的应用系统设计基础 硬件电路设计,语言的设计基础,程序分析 PL/M-96可执行语句和程序等等.... 第一章 概述 1.1 单片机应用系统的结构 1.2 MCS-96单片机应用系统设计基础 1.2.1 引脚功能及外部扩展特性 1.2.2 储存器及管理 1.2.3 芯片组态寄存器 1.3 MCS-96单片机应用系统的设计与调试 1.3.1 总体设计 1.3.2 硬件电路设计 1.3.3 基本硬件电路调试 1.3.4 软件设计 1.4 PL/M-96语言特点 第二章 PL/M-96简单程序分析 2.2 PL/M-96字符集 标示符 注释 2.2.1 字符集 2.2.2 标示符 保留字和预说明符 2.2.3 注释 2.3 数据类型和类型说明 2.3.1 数据类型 2.3.2 简单说明句 2.4 变量 2.4.1 字节 字 和双字变量 2.4.2 整型 短整型 和长整型变量 2.4.3 实型变量 2.4.4 地址型变量和运算符的地址应用 2.4.5 变量的Fast和Slow属性及说明 2.4.6 隐含类型转换 2.5 常数 2.5.1 纯数常数 2.5.2 浮点常数 2.5.3 字符串 2.6 表达式及运算规则 2.6.1 操作数 2.6.2 算术运算及其表达式 2.6.3 关系运算及其表达式 2.6.4 逻辑运算及其表达式 2.6.5 表达式的运算顺序 2.6.6 常数表达式计算 2.7 数据和结构 2.7.1 数组 2.7.2 结构 ......... .........
上传时间: 2013-11-19
上传用户:chenbhdt
本书从应用的角度,详细地介绍了MCS-51单片机的硬件结构、指令系统、各种硬件接口设计、各种常用的数据运算和处理程序及接口驱动程序的设计以及MCS-51单片机应用系统的设计,并对MCS-51单片机应用系统设计中的抗干扰技术以及各种新器件也作了详细的介绍。本书突出了选取内容的实用性、典型性。书中的应用实例,大多来自科研工作及教学实践,且经过检验,内容丰富、翔实。 本书可作为工科院校的本科生、研究生、专科生学习MCS-51单片机课程的教材,也可供从事自动控制、智能仪器仪表、测试、机电一体化以及各类从事MCS-51单片机应用的工程技术人员参考。 第一章 单片微型计等机概述 1.1 单片机的历史及发展概况 1.2 单片机的发展趋势 1.3 单片机的应用 1.3.1 单片机的特点 1.3.2 单片机的应用范围 1.4 8位单片机的主要生产厂家和机型 1.5 MCS-51系列单片机 第二章 MCS-51单片机的硬件结构 2.1 MCS-51单片机的硬件结构 2.2 MCS-51的引脚 2.2.1 电源及时钟引脚 2.2.2 控制引脚 2.2.3 I/O口引脚 2.3 MCS-51单片机的中央处理器(CPU) 2.3.1 运算部件 2.3.2 控制部件 2.4 MCS-51存储器的结构 2.4.1 程序存储器 2.4.2 内部数据存储器 2.4.3 特殊功能寄存器(SFR) 2.4.4 位地址空间 2.4.5 外部数据存储器 2.5 I/O端口 2.5.1 I/O口的内部结构 2.5.2 I/O口的读操作 2.5.3 I/O口的写操作及负载能力 2.6 复位电路 2.6.1 复位时各寄存器的状态 2.6.2 复位电路 2.7 时钟电路 2.7.1 内部时钟方式 2.7.2 外部时钟方式 2.7.3 时钟信号的输出 第三章 MCS-51的指令系统 3.1 MCS-51指令系统的寻址方式 3.1.1 寄存器寻址 3.1.2 直接寻址 3.1.3 寄存器间接寻址 3.1.4 立即寻址 3.1.5 基址寄存器加变址寄存器间址寻址 3.2 MCS-51指令系统及一般说明 3.2.1 数据传送类指令 3.2.2 算术操作类指令 3.2.3 逻辑运算指令 3.2.4 控制转移类指令 3.2.5 位操作类指令 第四章 MCS-51的定时器/计数器 4.1 定时器/计数器的结构 4.1.1 工作方式控制寄存器TMOD 4.1.2 定时器/计数器控制寄存器TCON 4.2 定时器/计数器的四种工作方式 4.2.1 方式0 4.2.2 方式1 4.2.3 方式2 4.2.4 方式3 4.3 定时器/计数器对输入信号的要求 4.4 定时器/计数器编程和应用 4.4.1 方式o应用(1ms定时) 4.4.2 方式1应用 4.4.3 方式2计数方式 4.4.4 方式3的应用 4.4.5 定时器溢出同步问题 4.4.6 运行中读定时器/计数器 4.4.7 门控制位GATE的功能和使用方法(以T1为例) 第五章 MCS-51的串行口 5.1 串行口的结构 5.1.1 串行口控制寄存器SCON 5.1.2 特殊功能寄存器PCON 5.2 串行口的工作方式 5.2.1 方式0 5.2.2 方式1 5.2.3 方式2 5.2.4 方式3 5.3 多机通讯 5.4 波特率的制定方法 5.4.1 波特率的定义 5.4.2 定时器T1产生波特率的计算 5.5 串行口的编程和应用 5.5.1 串行口方式1应用编程(双机通讯) 5.5.2 串行口方式2应用编程 5.5.3 串行口方式3应用编程(双机通讯) 第六章 MCS-51的中断系统 6.1 中断请求源 6.2 中断控制 6.2.1 中断屏蔽 6.2.2 中断优先级优 6.3 中断的响应过程 6.4 外部中断的响应时间 6.5 外部中断的方式选择 6.5.1 电平触发方式 6.5.2 边沿触发方式 6.6 多外部中断源系统设计 6.6.1 定时器作为外部中断源的使用方法 6.6.2 中断和查询结合的方法 6.6.3 用优先权编码器扩展外部中断源 第七章 MCS-51单片机扩展存储器的设计 7.1 概述 7.1.1 只读存储器 7.1.2 可读写存储器 7.1.3 不挥发性读写存储器 7.1.4 特殊存储器 7.2 存储器扩展的基本方法 7.2.1 MCS-51单片机对存储器的控制 7.2.2 外扩存储器时应注意的问题 7.3 程序存储器EPROM的扩展 7.3.1 程序存储器的操作时序 7.3.2 常用的EPROM芯片 7.3.3 外部地址锁存器和地址译码器 7.3.4 典型EPROM扩展电路 7.4 静态数据存储的器扩展 7.4.1 外扩数据存储器的操作时序 7.4.2 常用的SRAM芯片 7.4.3 64K字节以内SRAM的扩展 7.4.4 超过64K字节SRAM扩展 7.5 不挥发性读写存储器扩展 7.5.1 EPROM扩展 7.5.2 SRAM掉电保护电路 7.6 特殊存储器扩展 7.6.1 双口RAMIDT7132的扩展 7.6.2 快擦写存储器的扩展 7.6.3 先进先出双端口RAM的扩展 第八章 MCS-51扩展I/O接口的设计 8.1 扩展概述 8.2 MCS-51单片机与可编程并行I/O芯片8255A的接口 8.2.1 8255A芯片介绍 8.2.2 8031单片机同8255A的接口 8.2.3 接口应用举例 8.3 MCS-51与可编程RAM/IO芯片8155H的接口 8.3.1 8155H芯片介绍 8.3.2 8031单片机与8155H的接口及应用 8.4 用MCS-51的串行口扩展并行口 8.4.1 扩展并行输入口 8.4.2 扩展并行输出口 8.5 用74LSTTL电路扩展并行I/O口 8.5.1 用74LS377扩展一个8位并行输出口 8.5.2 用74LS373扩展一个8位并行输入口 8.5.3 MCS-51单片机与总线驱动器的接口 8.6 MCS-51与8253的接口 8.6.1 逻辑结构与操作编址 8.6.2 8253工作方式和控制字定义 8.6.3 8253的工作方式与操作时序 8.6.4 8253的接口和编程实例 第九章 MCS-51与键盘、打印机的接口 9.1 LED显示器接口原理 9.1.1 LED显示器结构 9.1.2 显示器工作原理 9.2 键盘接口原理 9.2.1 键盘工作原理 9.2.2 单片机对非编码键盘的控制方式 9.3 键盘/显示器接口实例 9.3.1 利用8155H芯片实现键盘/显示器接口 9.3.2 利用8031的串行口实现键盘/显示器接口 9.3.3 利用专用键盘/显示器接口芯片8279实现键盘/显示器接口 9.4 MCS-51与液晶显示器(LCD)的接口 9.4.1 LCD的基本结构及工作原理 9.4.2 点阵式液晶显示控制器HD61830介绍 9.5 MCS-51与微型打印机的接口 9.5.1 MCS-51与TPμp-40A/16A微型打印机的接口 9.5.2 MCS-51与GP16微型打印机的接口 9.5.3 MCS-51与PP40绘图打印机的接口 9.6 MCS-51单片机与BCD码拨盘的接口设计 9.6.1 BCD码拨盘 9.6.2 BCD码拨盘与单片机的接口 9.6.3 拨盘输出程序 9.7 MCS-51单片机与CRT的接口 9.7.1 SCIBCRT接口板的主要特点及技术参数 9.7.2 SCIB接口板的工作原理 9.7.3 SCIB与MCS-51单片机的接口 9.7.4 SCIB的CRT显示软件设计方法 第十章 MCS-51与D/A、A/D的接口 10.1 有关DAC及ADC的性能指标和选择要点 10.1.1 性能指标 10.1.2 选择ABC和DAC的要点 10.2 MCS-51与DAC的接口 10.2.1 MCS-51与DAC0832的接口 10.2.2 MCS-51同DAC1020及DAC1220的接口 10.2.3 MCS-51同串行输入的DAC芯片AD7543的接口 10.3 MCS-51与ADC的接口 10.3.1 MCS-51与5G14433(双积分型)的接口 10.3.2 MCS-51与ICL7135(双积分型)的接口 10.3.3 MCS-51与ICL7109(双积分型)的接口 10.3.4 MCS-51与ADC0809(逐次逼近型)的接口 10.3.5 8031AD574(逐次逼近型)的接口 10.4 V/F转换器接口技术 10.4.1 V/F转换器实现A/D转换的方法 10.4.2 常用V/F转换器LMX31简介 10.4.3 V/F转换器与MCS-51单片机接口 10.4.4 LM331应用举例 第十一章 标准串行接口及应用 11.1 概述 11.2 串行通讯的接口标准 11.2.1 RS-232C接口 11.2.2 RS-422A接口 11.2.3 RS-485接口 11.2.4 各种串行接口性能比较 11.3 双机串行通讯技术 11.3.1 单片机双机通讯技术 11.3.2 PC机与8031单片机双机通讯技术 11.4 多机串行通讯技术 11.4.1 单片机多机通讯技术 11.4.2 IBM-PC机与单片机多机通讯技术 11.5 串行通讯中的波特率设置技术 11.5.1 IBM-PC/XT系统中波特率的产生 11.5.2 MCS-51单片机串行通讯波特率的确定 11.5.3 波特率相对误差范围的确定方法 11.5.4 SMOD位对波特率的影响 第十二章 MCS-51的功率接口 12.1 常用功率器件 12.1.1 晶闸管 12.1.2 固态继电器 12.1.3 功率晶体管 12.1.4 功率场效应晶体管 12.2 开关型功率接口 12.2.1 光电耦合器驱动接口 12.2.2 继电器型驱动接口 12.2.3 晶闸管及脉冲变压器驱动接口 第十三章 MCS-51单片机与日历的接口设计 13.1 概述 13.2 MCS-51单片机与实时日历时钟芯片MSM5832的接口设计 13.2.1 MSM5832性能及引脚说明 13.2.2 MSM5832时序分析 13.2.3 8031单片机与MSM5832的接口设计 13.3 MCS-51单片机与实时日历时钟芯片MC146818的接口设计 13.3.1 MC146818性能及引脚说明 13.3.2 MC146818芯片地址分配及各单元的编程 13.3.3 MC146818的中断 13.3.4 8031单片机与MC146818的接口电路设计 13.3.5 8031单片机与MC146818的接口软件设计 第十四章 MCS-51程序设计及实用子程序 14.1 查表程序设计 14.2 散转程序设计 14.2.1 使用转移指令表的散转程序 14.2.2 使用地地址偏移量表的散转程序 14.2.3 使用转向地址表的散转程序 14.2.4 利用RET指令实现的散转程序 14.3 循环程序设计 14.3.1 单循环 14.3.2 多重循环 14.4 定点数运算程序设计 14.4.1 定点数的表示方法 14.4.2 定点数加减运算 14.4.3 定点数乘法运算 14.4.4 定点数除法 14.5 浮点数运算程序设计 14.5.1 浮点数的表示 14.5.2 浮点数的加减法运算 14.5.3 浮点数乘除法运算 14.5.4 定点数与浮点数的转换 14.6 码制转换 ……
上传时间: 2013-11-06
上传用户:xuanjie