单片机原理及应用实验指导书 第一部分 系统介绍一、系统的特点EL 型微机教学实验系统旨在提高实验者的动手能力、分析解决问题的能力,系统具有以下特点:1、系统采用了模块化设计,实验系统功能齐全,涵盖了微处理器教学实验课程的大部分内容。2、系统采用了开放式的结构设计,通二组相对独立的总线最多可同时扩展二块应用实验板,用户可根据需要购置相应的实验板,降低了成本,提高了灵活性,便于升级换代。3、配有两块可编程器件EPM7064/ATF1502,一块被系统占用。另一块供用户实验用。两块器件皆可通过JTAG 接口在线编程。使用十分方便。4、系统配有LED 数码管显示和点阵式液晶显示模块,二者的接口都对用户开放,方便用户灵活使用。5、系统配有完善的输入键盘,方便用户灵活编程。6、灵活的电源接口:配有PC 机电源插座,可有PC 提供电源。另外还配有外接开关电源,提供所需的+5V、±12V,其输入为220V 的交流电。7、系统的联机运行模式:配有系统调试软件,系统调试软件分为DOC 版和WINDOWS 版两种,均为中文多窗口界面。调试程序时可以同时打开寄存器窗口、内存窗口、变量窗口、反汇编窗口、波形显示窗口等等,极大的方便了用户的程序调试。该软件集源程序编辑、编译、链接、调试于一体,每项功能均为中卫下拉菜单,简明易学。经常使用的功能均备有热键,这样可以提高程序的调试效率。调试软件不仅支持汇编语言,而且还支持C 语言编辑、编译调试。8、系统的单机运行模式:系统在没有与计算机连接的情况下,自动运行在单机模式,在此模式下,用户可通过键盘输入运行程序(机器码),和操作指令,同时将输入信息及操作的结果在LED 数码管上显示出来。9、系统的功能齐全,可扩展性(数据总线、地址总线、控制总线为用户开放)亦能轻松满足其课程设计、毕业设计使用等。二、系统概述1、微处理器: 8031,它的P1 口、T0、EX0、EX1、RXD、TXD、RD、WR 皆对用户开放,供用户使用。2、时钟频率:6.0MHz3、存储器:程序存储器与数据存储器统一编址,最多可达64K,板载ROM(监控程序27C256)16K,RAM(程序存储器6264)8K 供用户下载实验程序,可达到32K;RAM(数据存储器6264)8K 供用户程序使用,可扩展达32K。(RAM 程序存储器与数据存储器不可同时扩展至32K,具体与厂家联系)。(见图1-1:存储器组织图)。在程序存储器中:20000H----2FFFFH 为监控程序存储器区,用户不可使用,3000H----3FFFH 为用户数据存储区。4000H----7FFFH 为实验程序存储器区,供用户下载实验程序8000H----CF9FH,CFF0H------FFFFH 为用户CPLD 实验区段,用户可在此段空间编程。CFA0H----CFDFH 系统I/O 区,用户可用但不可更改。
上传时间: 2013-10-21
上传用户:kiklkook
基于HT45R37的低功耗C/R-F型八位OTP单片机 HT45R37 是一款低功耗C/R-F 型具有8 位高性能精简指令集的单片机。作为一款C/R-F 型的单片机,它可以连接16 个外部电容/电阻式传感器,并把它们的电容值或电阻值转换成相应的频率进行处理。此外,单片机带有内部A/D 转换器,能够直接与模拟信号相连接,且它还集成了双通道的脉冲宽度调节器,用于控制外部的马达和LED 灯等。
上传时间: 2013-11-23
上传用户:chenlong
HT45R38在触摸按键式电子时钟中的应用 HT45R38可用来开发触摸按键式电子时钟,这是因为HT45R38提供了12个Touch Switch提供了5个信道的ADC及两信道的PWM输出。
上传时间: 2013-11-24
上传用户:jelenecheung
PCF8883T是NXP半导体最新推出的一款电容式接近开关,它采用了EDSIEN专利,用数字方法来检测遥感板的电容变化。通过使用连续自动校准功能,可以自动补偿静态的电容变化(而非动态的电容变化)。遥感板(如导电箔)可以直接连接到IC,也可以使用同轴电缆与IC远程连接。
上传时间: 2013-10-26
上传用户:XLHrest
PCF8883T是NXP半导体最新推出的一款电容式接近开关,它采用了EDSIEN专利,用数字方法来检测遥感板的电容变化。
上传时间: 2013-11-25
上传用户:yyxy
介绍了基于51单片机的网络连接控制器的软硬件设计方案,主要采用Atmel公司的8 b单片机AT89C51作为核心处理器,采用RealTek公司的RTL8O19AS芯片接入以太网。同时讨论了精简的TCP/IP协议栈的分层次实现,实现了可靠的UDP数据通信。
上传时间: 2013-11-22
上传用户:alex wang
EZ-USB FX系列单片机USB外围设备设计与应用:PART 1 USB的基本概念第1章 USB的基本特性1.1 USB简介21.2 USB的发展历程31.2.1 USB 1.131.2.2 USB 2.041.2.3 USB与IEEE 1394的比较41.3 USB基本架构与总线架构61.4 USB的总线结构81.5 USB数据流的模式与管线的概念91.6 USB硬件规范101.6.1 USB的硬件特性111.6.2 USB接口的电气特性121.6.3USB的电源管理141.7 USB的编码方式141.8 结论161.9 问题与讨论16第2章 USB通信协议2.1 USB通信协议172.2 USB封包中的数据域类型182.2.1 数据域位的格式182.3 封包格式192.4 USB传输的类型232.4.1 控制传输242.4.2 中断传输292.4.3 批量传输292.4.4 等时传输292.5 USB数据交换格式302.6 USB描述符342.7 USB设备请求422.8 USB设备群组442.9 结论462.10 问题与讨论46第3章 设备列举3.1注册表编辑器473.2设备列举的步骤493.3设备列举步骤的实现--使用CATC分析工具513.4结论613.5问题与讨论61第4章 USB芯片与EZUSB4.1USB芯片的简介624.2USB接口芯片644.2.1Philips接口芯片644.2.2National Semiconductor接口芯片664.3内含USB单元的微处理器684.3.1Motorola694.3.2Microchip694.3.3SIEMENS704.3.4Cypress714.4USB芯片总揽介绍734.5USB芯片的选择与评估744.6问题与讨论80第5章 设备与驱动程序5.1阶层式的驱动程序815.2主机的驱动程序835.3驱动程序的选择865.4结论865.5问题与讨论87第6章 HID群组6.1HID简介886.2HID群组的传输速率886.3HID描述符906.3.1报告描述符936.3.2主要 main 项目类型966.3.3整体 global 项目卷标976.3.4区域 local 项目卷标986.3.5简易的报告描述符996.3.6Descriptor Tool 描述符工具 1006.3.7兼容测试程序1016.4HID设备的基本请求1026.5Windows通信程序1036.6问题与讨论106PART 2 硬件技术篇第7章 EZUSB FX简介7.1简介1097.2EZUSB FX硬件框图1097.3封包与PID码1117.4主机是个主控者1137.4.1从主机接收数据1137.4.2传送数据至主机1137.5USB方向1137.6帧1147.7EZUSB FX传输类型1147.7.1批量传输1147.7.2中断传输1147.7.3等时传输1157.7.4控制传输1157.8设备列举1167.9USB核心1167.10EZUSB FX单片机1177.11重新设备列举1177.12EZUSB FX端点1187.12.1EZUSB FX批量端点1187.12.2EZUSB FX控制端点01187.12.3EZUSB FX中断端点1197.12.4EZUSB FX等时端点1197.13快速传送模式1197.14中断1207.15重置与电源管理1207.16EZUSB 2100系列1207.17FX系列--从FIFO1227.18FX系列--GPIF 通用型可程序化的接口 1227.19AN2122/26各种特性的摘要1227.20修订ID1237.21引脚描述123第8章 EZUSB FX CPU8.1简介1308.28051增强模式1308.3EZUSB FX所增强的部分1318.4EZUSB FX寄存器接口1318.5EZUSB FX内部RAM1318.6I/O端口1328.7中断1328.8电源控制1338.9特殊功能寄存器 SFR 1348.10内部总线1358.11重置136第9章 EZUSB FX内存9.1简介1379.28051内存1389.3扩充的EZUSB FX内存1399.4CS#与OE#信号1409.5EZUSB FX ROM版本141第10章 EZUSB FX输入/输出端口10.1简介14310.2I/O端口14310.3EZUSB输入/输出端口寄存器14610.3.1端口配置寄存器14710.3.2I/O端口寄存器14710.4EZUSB FX输入/输出端口寄存器14910.5EZUSB FX端口配置表15110.6I2C控制器15610.78051 I2C控制器15610.8控制位15810.8.1START位15810.8.2STOP位15810.8.3LASTRD位15810.9状态位15910.9.1DONE位15910.9.2ACK位15910.9.3BERR位15910.9.4ID1, ID015910.10送出 WRITE I2C数据16010.11接收 READ I2C数据16010.12I2C激活加载器16010.13SFR寻址 FX 16210.14端口A~E的SFR控制165第11章 EZUSB FX设备列举与重新设备列举11.1简介16711.2预设的USB设备16911.3USB核心对于EP0设备请求的响应17011.4固件下载17111.5设备列举模式17211.6没有存在EEPROM17311.7存在着EEPROM, 第一个字节是0xB0 0xB4, FX系列11.8存在着EEPROM, 第一个字节是0xB2 0xB6, FX系列11.9配置字节0,FX系列17711.10重新设备列举 ReNumerationTM 17811.11多重重新设备列举 ReNumerationTM 17911.12预设描述符179第12章 EZUSB FX批量传输12.1简介18812.2批量输入传输18912.3中断传输19112.4EZUSB FX批量IN的例子19112.5批量OUT传输19212.6端点对19412.7IN端点对的状态19412.8OUT端点对的状态19512.9使用批量缓冲区内存19512.10Data Toggle控制19612.11轮询的批量传输的范例19712.12设备列举说明19912.13批量端点中断19912.14中断批量传输的范例20112.15设备列举说明20512.16自动指针器205第13章 EZUSB控制端点013.1简介20913.2控制端点EP021013.3USB请求21213.3.1取得状态 Get_Status 21413.3.2设置特性(Set_Feature)21713.3.3清除特性(Clear_Feature)21813.3.4取得描述符(Get_Descriptor)21913.3.5设置描述符(Set Descriptor)22313.3.6设置配置(Set_Configuration)22513.3.7取得配置(Get_Configuration)22513.3.8设置接口(Set_Interface)22513.3.9取得接口(Get_Interface)22613.3.10设置地址(Set_Address)22713.3.11同步帧22713.3.12固件加载228第14章 EZUSB FX等时传输14.1简介22914.2等时IN传输23014.2.1初始化设置23014.2.2IN数据传输23014.3等时OUT传输23114.3.1初始化设置23114.3.2数据传输23214.4设置等时FIFO的大小23214.5等时传输速度23414.5.1EZUSB 2100系列23414.5.2EZUSB FX系列23514.6快速传输 仅存于2100系列 23614.6.1快速写入23614.6.2快速读取23714.7快速传输的时序 仅存于2100系列 23714.7.1快速写入波形23814.7.2快速读取波形23914.8快速传输速度(仅存于2100系列)23914.9其余的等时寄存器24014.9.1除能等时寄存器24014.9.20字节计数位24114.10以无数据来响应等时IN令牌24214.11使用等时FIFO242第15章 EZUSB FX中断15.1简介24315.2USB核心中断24415.3唤醒中断24415.4USB中断信号源24515.5SUTOK与SUDAV中断24815.6SOF中断24915.7中止 suspend 中断24915.8USB重置中断24915.9批量端点中断25015.10USB自动向量25015.11USB自动向量译码25115.12I2C中断25215.13IN批量NAK中断 仅存于AN2122/26与FX系列 25315.14I2C STOP反相中断 仅存于AN2122/26与FX系列 25415.15从FIFO中断 INT4 255第16章 EZUSB FX重置16.1简介25716.2EZUSB FX打开电源重置 POR 25716.38051重置的释放25916.3.1RAM的下载26016.3.2下载EEPROM26016.3.3外部ROM26016.48051重置所产生的影响26016.5USB总线重置26116.6EZUSB脱离26216.7各种重置状态的总结263第17章 EZUSB FX电源管理17.1简介26517.2中止 suspend 26617.3回复 resume 26717.4远程唤醒 remote wakeup 269第18章 EZUSB FX系统18.1简介27118.2DMA寄存器描述27218.2.1来源. 目的. 传输长度地址寄存器27218.2.2DMA起始与状态寄存器27518.2.3DMA同步突发使能寄存器27518.2.4虚拟寄存器27818.3RD/FRD与WR/FWR DMA闪控的选择27818.4DMA闪控波形与延伸位的交互影响27918.4.1DMA外部写入27918.4.2DMA外部读取280第19章 EZUSB FX寄存器19.1简介28219.2批量数据缓冲区寄存器28319.3等时数据FIFO寄存器28419.4等时字节计数寄存器28519.5CPU寄存器28719.6I/O端口配置寄存器28819.7I/O端口A~C输入/输出寄存器28919.8230 Kbaud UART操作--AN2122/26寄存器29119.9等时控制/状态寄存器29119.10I2C寄存器29219.11中断29419.12端点0控制与状态寄存器29919.13端点1~7的控制与状态寄存器30019.14整体USB寄存器30519.15快速传输30919.16SETUP数据31119.17等时FIFO的容量大小31119.18通用I/F中断使能31219.19通用中断请求31219.20输入/输出端口寄存器D与E31319.20.1端口D输出31319.20.2输入端口D脚位31319.20.3端口D输出使能31319.20.4端口E输出31319.20.5输入端口E脚位31419.20.6端口E输出使能31419.21端口设置31419.22接口配置31419.23端口A与端口C切换配置31619.23.1端口A切换配置#231619.23.2端口C切换配置#231719.24DMA寄存器31919.24.1来源. 目的. 传输长度地址寄存器31919.24.2DMA起始与状态寄存器32019.24.3DMA同步突发使能寄存器32019.24.4选择8051 A/D总线作为外部FIFO321PART 3 固件技术篇第20章 EZUSB FX固件架构与函数库20.1固件架构总览32320.2固件架构的建立32520.3固件架构的副函数钩子32520.3.1工作分配器32620.3.2设备请求 device request 32620.3.3USB中断服务例程32920.4固件架构整体变量33220.5描述符表33320.5.1设备描述符33320.5.2配置描述符33420.5.3接口描述符33420.5.4端点描述符33520.5.5字符串描述符33520.5.6群组描述符33520.6EZUSB FX固件的函数库33620.6.1包含文件 *.H 33620.6.2子程序33620.6.3整体变量33820.7固件架构的原始程序代码338第21章 EZUSB FX固件范例程序21.1范例程序的简介34621.2外围I/O测试程序34721.3端点对, EP_PAIR范例35221.4批量测试, BulkTest范例36221.5等时传输, ISOstrm范例36821.6问题与讨论373PART 4 实验篇第22章 EZUSB FX仿真器22?1简介37522?2所需的工具37622?3EZUSB FX框图37722.4EZUSB最终版本的系统框图37822?5第一次下载程序37822.6EZUSB FX开发系统框图37922.7设置开发环境38022.8EZUSB FX开发工具组的内容38122.9EZUSB FX开发工具组软件38222.9.1初步安装程序38222.9.2确认主机 个人计算机 是否支持USB38222.10安装EZUSB控制平台. 驱动程序以及文件38322.11EZUSB FX开发电路板38522.11.1简介38522.11.2开发电路板的浏览38522.11.3所使用的8051资源38622.11.4详细电路38622.11.5LED的显示38722.11.6Jumper38722.11.7连接器39122.11.8内存映象图39222.11.9PLD信号39422.11.10PLD源文件文件39522.11.11雏形板的扩充连接器P1~P639722.11.12Philips PCF8574 I/O扩充IC40022.12DMA USB FX I/O LAB开发工具介绍40122.12.1USBFX简介40122.12.2USBFX及外围整体环境介绍40322?12?3USBFX与PC连接软件介绍40422.12.4USBFX硬件功能介绍404第23章 LED显示器输出实验23.1硬件设计与基本概念40923.2固件设计41023.3.1固件架构文件FW.C41123.3.2描述符文件DESCR.A5141223.3.3外围接口文件PERIPH.C41723.4固件程序代码的编译与链接42123.5Windows程序, VB设计42323.6INF文件的编写设计42423.7结论42623.8问题与讨论427第24章 七段显示器与键盘的输入/输出实验24.1硬件设计与基本概念42824.2固件设计43124.2.1七段显示器43124.2.24×4键盘扫描43324.3固件程序代码的编译与链接43424.4Windows程序, VB设计43624.5问题与讨论437第25章 LCD文字型液晶显示器输出实验25.1硬件设计与基本概念43825.1.1液晶显示器LCD43825.2固件设计45225.3固件程序代码的编译与链接45625.4Windows程序, VB设计45725.5问题与讨论458第26章 LED点阵输出实验26.1硬件设计与基本概念45926.2固件设计46326.3固件程序代码的编译与链接46326.4Windows程序, VB设计46526.5问题与讨论465第27章 步进电机输出实验27.1硬件设计与基本概念46627.1.11相激磁46727.1.22相激磁46727.1.31-2相激磁46827?1?4PMM8713介绍46927.2固件设计47327.3固件程序代码的编译与链接47427.4Windows程序, VB设计47627.5问题与讨论477第28章 I2C接口输入/输出实验28.1硬件设计与基本概念47828.2固件设计48128.3固件程序代码的编译与链接48328.4Windows程序, VB设计48428.5问题与讨论485第29章 A/D转换器与D/A转换器的输入/输出实验29.1硬件设计与基本概念48629.1.1A/D转换器48629.1.2D/A转换器49029.2固件设计49329.2.1A/D转换器的固件设计49329.2.2D/A转换器的固件设计49629.3固件程序代码的编译与链接49729.4Windows程序, VB设计49829.5问题与讨论499第30章 LCG绘图型液晶显示器输出实验30.1硬件设计与基本概念50030.1.1绘图型LCD50030.1.2绘图型LCD控制指令集50330.1.3绘图型LCD读取与写入时序图50530.2固件设计50630.2.1LCG驱动程序50630.2.2USB固件码51330.3固件程序代码的编译与链接51630.4Windows程序, VB设计51730.5问题与讨论518附录A Cypress控制平台的操作A.1EZUSB控制平台总览519A.2主画面520A.3热插拔新的USB设备521A.4各种工具栏的使用524A.5故障排除526A.6控制平台的进阶操作527A.7测试Unary Op工具栏上的按钮功能528A.8测试制造商请求的工具栏 2100 系列的开发电路板 529A.9测试等时传输工具栏532A.10测试批量传输工具栏533A.11测试重置管线工具栏535A.12测试设置接口工具栏537A.13测试制造商请求工具栏 FX系列开发电路板A.14执行Get Device Descriptor 操作来验证开发板的功能是否正确539A.15从EZUSB控制平台中, 加载dev_io的范例并且加以执行540A.16从Keil侦错应用程序中, 加载dev_io范例程序代码, 然后再加以执行542A.17将dev_io 目标文件移开, 且使用Keil IDE 集成开发环境 来重建545A.18在侦错器下执行dev_io目标文件, 并且使用具有侦错能力的IDE547A.19在EZUSB控制平台下, 执行ep_pair目标文件A.20如何修改fw范例, 并在开发电路板上产生等时传输550附录BEZUSB 2100系列及EZUSB FX系列引脚表B.1EZUSB 2100系列引脚表555B?2EZUSB FX系列引脚图表561附录C EZUSB FX寄存器总览附录D EEPROM烧录方式
上传时间: 2013-11-21
上传用户:努力努力再努力
《微机原理及应用》课程教案目 录 下载WORD文档前 言 下载WORD文档第一章 51系列单片机概述 下载WORD文档 第一节 概述 第二节 51系列单片机分类 思考题与习题 第二章 MCS-51系列单片机组成及工作原理 下载WORD文档 第一节 MCS-51系列单片机组成 第二节 8051的内部数据存储器(内部RAM) 第三节 8051的内部程序存储器(内部ROM) 第四节 MCS-51系列单片机典型芯片的外部引脚功能 第五节 并行输入/输出口 第六节 CPU的时钟电路和时序定时单位 第七节 单片机指令执行的过程 思考题与习题 第三章 指令系统 下载WORD文档 第一节 指令格式和寻址方式 第二节 指令系统 思考题与习题 第四章 算法与结构程序设计 下载WORD文档 第一节 算法 第二节 程序基本结构 第三节 结构化程序设计 第四节 汇编语言程序设计举例 思考题与习题 第五章 中断 下载WORD文档 第一节 中断技术概述 第二节 8051中断系统 第三节 中断控制 第四节 中断响应 第五节 中断系统应用举例 思考题与习题 第六章 定时器/计数器 下载WORD文档 第一节 概述 第二节 定时器/计数器基本结构 工作方式及应用 思考题与习题 第七章 8051单片机系统扩展与接口技术 下载WORD文档 第一节 8051单片机系统扩展概述 第二节 单片机外部存储器扩展 第三节 单片机输入/输出(I/O)口扩展 第四节 LED显示器接口电路及显示程序 第五节 单片机键盘接口技术 第六节 单片机与数模(D/A)及模数(A/D)转换器的接口及应用 思考题与习题 第八章 8051单片机的异步串行通信技术 下载WORD文档 第一节 概述 第二节 8051串行口基本结构 第三节 8051串行通信工作方式及应用 第四节 多机通信原理 下载WORD文档 思考题与习题 第九章 单片机应用举例 下载WORD文档 第一节 单片机数据采集系统 第二节 电机转速测量 第三节 步进电机控制系统 第四节 机器人三觉机械手信号处理及控制算法 思考题与习题 第十章 单片机与字符式液晶显示模块连接技术 下载WORD文档 第一节 字符式液晶显示模块简介 第二节 模块指令系统 第三节 模块与8051单片机的接口 第四节 模块字符显示举例 第五节 自定义字符显示 思考题与习题 附录一 计算机数的运算基础 下载WORD文档 第一节 进位计数制及相互转换 第二节 计算机中数和字符的表示附录二 美国标准信息交换码(ASCII)字符表附录三 MCS-51指令表 下载WORD文档
上传时间: 2014-04-16
上传用户:hhkpj
量热仪是能源生产和能耗企业必备的重要测量仪器,其测量精度和效率直接影响着经济效益。为了提高量热仪的测量精度,整个量热系统的测温精度、准确性、稳定性等诸多方面都需要得到改善和提高。本文给出了采用单片机及铂电阻PT1000 为核心器件的高精度恒温式自动量热仪设计。燃料的价值就在于燃烧过程中能够发热,因此燃烧热量就成为评估燃料质量最重要的指标,而燃烧热量通常是由量热仪来测量的。因此,量热仪是能源生产和能耗企业必备的重要仪器,其测量精度和效率直接影响着经济效益。量热仪可分别用于电力、煤炭、焦炭、石油、化工、水泥、军工、粮食、饲料、木材、木炭以及科研等行业测量固体、液体等可燃物资的发热量。由于其应用范围很广,因此研制出更高测量精度和效率的量热仪具有很好的发展前景及经济效益。我国是产煤大国,而衡量煤炭质量的最重要指标之一是其燃烧发热量。因而,目前国内普遍采用以发热量作为动力煤计价的主要依据。由于煤炭的发热量主要是利用量热仪来测定,因此,目前恒温式自动量热仪在包括煤炭生产以及用煤单位如电力等系统广泛应用。但由于其在测温过程中不可避免地会受到客观和人为干扰,准确性受到一定影响。为了解决这一问题并根据现有量热仪存在的其它缺点,本文所设计的量热仪采用了以单片机为控制单元,选用更高精度的铂电阻PT1000 作为温度传感器,精心设计相关电路,增加信号处理单元,采用LabVIEW 设计操作界面等,不仅提升了量热仪的测量精度,而且具有良好的性价比。
上传时间: 2013-12-29
上传用户:lvzhr
涡卷式空气压缩机是一种新型空气压缩机,具有噪声低、体积小、可靠性好等特点。本文提出了一种基于ATMEL 89C52 单片机的涡卷式空气压缩机电气控制系统的实现方案,详细说明了总体方案设计、硬件设计与软件设计,并给出了关键元器件的选型。实际结果表明:该系统具有可靠性好、控制精度高、操作简便、配置灵活、直观的故障指示及完善的自保护等特点,完全满足了涡卷式空气压缩机现场控制的要求,是涡卷式空气压缩机的理想配套产品。常规的涡卷式空压机电控系统主要采用继电器加压力开关的方式进行控制,故障率高,可靠性低,控制参数的修改非常不便。本文提出了一种采用智能化微电脑集成设计技术的电控系统实现方案,它通过对关键点各种传感器进行实时检测来控制整个系统的工作状态,减少了常规控制方式下的电器元件及执行机构数量,提高了可靠性,降低了运行成本;清晰的实时状态指示,灵活的控制参数设置,完善的故障诊断,直观的故障显示,是空压机的理想配套产品。
上传时间: 2013-10-21
上传用户:ysystc670