随着国民经济的发展和社会的进步,人们越来越需要便捷的交通工具,从而促进了汽车工业的发展,同时汽车发动机检测维修等相关行业也发展起来。在汽车发动机检测维修中,发动机电脑(Electronic Control.Unit-ECU)检测维修是其中最关键的部分。发动机电脑根据发动机的曲轴或凸轮轴传感器信号控制发动机的喷油、点火和排气。所以,维修发动机电脑时,必须对其施加正确的信号。目前,许多发动机的曲轴和凸轮轴传感器信号已不再是正弦波和方波等传统信号,而是多种复杂波形信号。为了能够提供这种信号,本文研究并设计了一种能够产生复杂波形的低成本任意波形发生器(Arbitrary Waveform Generator-AWG)。 本文提出的任意波形发生器依据直接数字频率合成(Direct Digial FrequencySynthesis-DDFS)原理,采用自行设计现场可编程门阵列(FPGA)的方案实现频率合成,扩展数据存储器存储波形的量化幅值(波形数据),在微控制单元(MCU)的控制与协调下输出频率和相位均可调的信号。 任意波形发生器主要由用户控制界面、DDFS模块、放大及滤波、微控制器系统和电源模块五部分组成。在设计中采用FPGA芯片EPF10K10QC208-4实现DDFS的硬件算法。波形调整及滤波由两级放大电路来完成:第一级对D/A输出信号进行调整;第二级完成信号滤波及信号幅值和偏移量的调节。电源模块利用三端集成稳压器进行电压值变换,利用极性转换芯片ICL7660实现正负极性转换。 该任意波形发生器与通用模拟信号源相比具有:输出频率误差小,分辨率高,可产生任意波形,成本低,体积小,使用方便,工作稳定等优点,十分适合汽车维修行业使用,具有较好的市场前景。
上传时间: 2013-05-28
上传用户:cylnpy
在采矿、冶金、制造、化工、制药、供水等行业中,压力是生产过程中的重要参数,它的应用极其广泛。实时监测压力的变化是实施现代化生产管理的重要环节,因而压力测试技术和仪表的发展历来受到人们的重视。在采矿行业中,压力检测是保证采煤安全的重要一环,因此开发一种智能压力检测装置来用于采煤工作面液压系统的压力检测是十分必要的。 本文所设计的压力检测系统是ARM处理器与仪器的有机结合,它以菲利普公司的LPC2294为核心,利用电阻应变片将压力转换成电压信号,通过放大电路将电压信号放大并传输至LPC2294进行A/D转换,然后将各液压支架的压力数据传输至存储芯片保存,并显示。本系统的特点是:压力量程为1~60Mpa,每5分钟采集一次压力数据。各分机的压力数据通过CAN总线传输至主机,总线的传输速率为250Kbps。主机再通过串口将数据传输至计算机。计算机通过串口读取主机的压力数据,并将数据保存在数据库中,上位机采用NI公司的Labview软件进行设计。其中串口的接收部分用Labview中自带的VISA控件来编写,数据库部分采用微软的Access软件建立数据库,利用第三方编写的Labsql将数据写入数据库。 论文的第一章综述了压力检测的起源,发展以及国内外压力检测的现状;第二章主要论述了系统的整体设计思路及方法;论文第三章、第四章系统的硬件电路、软件开发环境及相关的软件流程;第五章简单介绍了PC机软件开发语言以及对上位机部分的软件设计做了简单的介绍。第六章对全文的工作做了总结,并对压力检测以后的发展方向阐述了自己的观点。
上传时间: 2013-08-01
上传用户:hustfanenze
DDS(Direct Digital Synthesis直接数字频率合成技术)是广泛应用的信号生成方法,其优点是易于程控,输出频率分辨率高,同时芯片的集成度高,适合于嵌入式系统设计。针对现有的压电陶瓷电源输出波形频率、相位等不能程控、电路集成度不高、体积和功耗较大等问题,本文以ARM作为控制电路核心,引入DDS技术产生输出的波形信号,并由集成高压运放将波形信号提高至输出级的电压和功率。 在压电陶瓷电源硬件电路中采用了模块化设计,主要分为ARM控制电路、DDS系统驱动电路和波形调理电路、高压运放电路等几个部分。电源控制电路以三星公司的S3C2440控制器为核心,以触摸屏作为人机输入界面;DDS芯片选用ADI公司的AD9851,设计了DDS系统外围驱动电路,滤波和信号调理电路,并应用了将DDS与锁相环技术相结合的杂散问题解决方案;高压运放电路由两级运放电路组成,采用了电压控制型驱动原理,放大电路的核心是PA92集成高压运放,加入了补偿电路以提高系统的响应带宽,并在电源输出设置了过电流保护和快速放电的放电回路。 电源软件部分采用WINCE嵌入式系统,根据WINCE系统驱动架构设计DDS芯片的流接口程序,编写了流接口函数和配置文件,并将流驱动程序集成入WINCE系统;编写了基于EVC的触摸屏人机界面主程序,由主程序将用户输入参数转换为DDS芯片的控制字,并采用动态加载流驱动方式将控制字送入DDS芯片实现了对其输出的控制。 对电源进行了不同典型波形输出的测试实验。在实验中,测试了DDS信号波形输出的精度和分辨率、电源动态输出精度和对信号波形的跟随性和响应性能。实验表明,压电陶瓷电源输出信号波形精度较高,对波形、频率等参数改变的响应速度快,达到电源输出稳定性要求。
上传时间: 2013-04-24
上传用户:haoxiyizhong
本文设计了一种基于单片机的模拟角位移传感器输出信号的电子装置,它以单片机为核心,经过D/A转换和放大电路的处理,最
上传时间: 2013-04-24
上传用户:qulele
心血管系统疾病是现今世界上发病率和死亡率最高的疾病之一。T波交替(T-wavealtemans,TWA)作为一种非稳态的心电变异性现象,是指心电T波段振幅、形态甚至极性逐拍交替变化。大量研究表明,TWA与室性心律失常、心脏性猝死等有直接密切的关系,已成为一种无创独立性预测指标。随着数字信号处理技术和计算机技术的迅速发展,微伏级的TWA已经可以被检出,并且精度越来越高。本文以T波交替检测为中心,基于ARM给出了T波交替检测技术原理性样机的硬件及软件,实现实时监护的目的。 在TWA检测研究中,需要对心电信号进行预处理,即信号去噪和特征点检测。小波分析以其多分辨率的特性和表征时频两域信号局部特征的能力成为我们选取的心电信号自动分析手段。文中采用小波变换将原始心电信号分解为不同频段的细节信号,根据三种主要噪声的不同能量分布,采用自适应阈值和软硬阈值折衷处理策略用阈值滤波方法对原始信号进行去噪处理:同时基于心电信号的特征点R峰对应于Mexican-hat小波变换的极值点,因此我们使用Mexican-hat小波检测R峰,通过附加检测方案确保了位置的准确性,并根据需要提出了T波矩阵提取方法。 随后文章介绍了T波交替的产生机理及研究进展,分别从临床应用和检测方法上展现了目前TWA的发展进程,并利用了谱分析法、相关分析法和移动平均修正算法分别从时域和频域对一些样本数据进行T波交替检测。在检测中谱分析法抗噪能力较强,但作为一种频域检测方法,无法检测非稳态TWA信号,而相关分析法受呼吸、噪声影响较大,数据要求较高,因此可以在谱分析检测为阳性TWA基础上,再对信号进行相关分析,从而克服自身算法缺陷,确定交替幅度和时间段。最后对影响检测结果的因素进行讨论研究,从而降低检测误差。 文章还设计了T波交替检测技术原理性样机的关键部分电路和软件框架。硬件部分围绕ARM核的Samsung S3C44BOX为核心,设计了该样机的关键电路,包括采集模块、数据处理模块(外部存储电路、通信接口电路等)。其中在采集模块中针对心电信号是微弱信号并且干扰大的特点,采用了具有高共模抑制比和高输入阻抗的分级放大电路,有效的提取了信号分量:A/D转换电路保证了信号量化的高精度。利用USB接口芯片和删内部异步串行通讯实现系统与外界联系。系统软件中首先介绍了系统的软件开发环境,然后给出了心电信号分析及处理程序设计流程图及实现,使它们共同完成系统的软件监护功能。
上传时间: 2013-07-27
上传用户:familiarsmile
超声波流量计以非接触、精度高、使用方便等优点,在气象、石油、化工、医药、水资源管理等领域获得了广泛的应用。近年来,随着数字处理技术和微处理器技术的发展,超声波流量计作为一种测量仪表也得到了长足进步。本课题将ARM微控制器用于流量测量仪表的研制,拓展了仪表的开发空间,符合嵌入式技术的发展方向。 本文详细介绍了超声波时差法流量测量原理及基于LPC2214的超声波流量计系统设计方案和软硬件实现方法,并对测时算法进行了详细讨论。通过分析和借鉴国外超声波流量测量的先进技术和方法,得出了改进的时差法测量方案。系统硬件设计了超声波发射、接收及放大电路,采用高速模数转换器数字化接收信号,并对ARM系统电路中的电源电路,存储器电路,通信接口电路等进行了详细介绍。系统软件详细分析了嵌入式操作系统uClinux的移植方法,给出构建ARM-uClinux平台的步骤,并基于此平台,完成了系统软件设计。测时算法运用数字滤波技术提高信号信噪比,采用方差比检验方法和插值算法,提高测时定位精度。 系统设计良好的人机交互界面和通信调试接口,提高了ARM系统的软件开发调试效率;在保证流量计系统功能的同时,尽量简化硬件电路设计,降低研制成本,使设计更具合理性。
上传时间: 2013-04-24
上传用户:mosliu
课件就是课件就是课件就是课件就是课件就是课件
上传时间: 2013-08-04
上传用户:yw14205
电液位置伺服系统具有控制精度高、响应速度快、输出功率大、信号处理灵活、易于实现各种参量反馈等优点,因此它已经遍及国民经济和军事工业的各个技术领域。近年来,对电液位置伺服系统的快速性、稳定性、准确性等控制性能提出了新的要求,作为电液位置伺服系统核心的控制器,起到更为关键的作用。 现阶段,嵌入式微处理器以其小型、专用、便携、高可靠的特点,已经在工业控制领域得到了广泛的应用,如工业过程、远程监控、智能仪器仪表、机器人控制、数控系统等,嵌入式微处理器嵌入实时操作系统,可以克服传统的基于单片机控制系统功能不足和基于PC的控制系统非实时性的缺点,其性能、可靠性等都能满足电液位置伺服系统控制的要求,在控制领域具有广泛的应用前景。 本文以实验室的电液位置伺服系统为研究对象,按照系统的控制要求,提出以ARM9(S3C2410)微处理器为核心的控制器对电液位置伺服系统进行控制的一种方案,设计了一种新型的基于ARM9(S3C2410)微处理器的电液位置伺服控制器。本系统控制器的开发设计中,在以ARM9(S3C2410)微处理器为核心的控制器基础上,通过外部扩展,使得系统控制器具有丰富的硬件资源,开发了A/D转换电路、D/A(PWM)转换电路、伺服放大电路、串行接口等电路,同时为了使得控制器的程序代码具有较强的可读性、可维护性、可扩展性,使用了操作系统,通过比较选择了uC/OS-Ⅱ实时内核,并成功移植到ARM9(S3C2410)微处理器中,并编写了A/D、数字滤波、D/A(PWM)等软件程序,通过编译、调试、验证,程序运行正常。在对电液位置伺服系统进行控制策略的选择中,分别采用PID、滑模变结构、模糊自学习滑模三种控制策略进行仿真比较,得出采用模糊自学习滑模控制策略更有利于系统控制。
上传时间: 2013-04-24
上传用户:sssnaxie
WIM动态称重系统的研究对于保护公路的正常使用有着非常重要的经济利益和社会价值。针对我国公路WIM系统的研究现状和存在的问题,提出了新的思路、解决办法和改进措施,用以提高整个WIM系统的各项性能指标。 基于ARM的压电薄膜轴的车辆动态称重系统的嵌入式研究与设计,致力于提高WIM系统精度等各项性能指标,其采用了高新的软硬件技术,是一个比较有研究意义的课题。 本文首先从分析称重原理入手,提出了一个改进的系统整体设计方案,在该方案的前提下,通过不断地试验修改,搭建了一个基于Labview的现场模拟实验系统,为下一步研究和整个系统的实现打下了坚实的基础。本文所做的具体工作,概括起来有如下几点: 第一,简要地介绍了基于压电薄膜轴的WIM系统原理、影响因素以及课题研究的意义等; 第二,给出了系统整体设计方案,并设计了多个信号调理电路,诸如电荷放大电路,隔离电路以及滤波电路等; 第三,采用了32位的微处理器,并采用了一种比较完善的数据处理方法,提高了系统的软硬件技术,在此基础上研究设计了基于ARM-μgC/OS-Ⅱ的WIM嵌入式系统平台,完成了系统的软硬件设计、实现及操作系统移植; 最后,设计并实地进行了一个新的试验,即基于LabVIEW8.2的数据采集卡的现场模拟试验,给出了试验结果和分析。该试验方便于测量与数据采集,可得到较为精准的现场数据,为后续的数据处理打下了基础;
上传时间: 2013-07-29
上传用户:源弋弋
随着国民经济的发展和社会的进步,人们越来越需要便捷的交通工具,从而促进了汽车工业的发展,同时汽车发动机检测维修等相关行业也发展起来。在汽车发动机检测维修中,发动机电脑(Electronic Control.Unit-ECU)检测维修是其中最关键的部分。发动机电脑根据发动机的曲轴或凸轮轴传感器信号控制发动机的喷油、点火和排气。所以,维修发动机电脑时,必须对其施加正确的信号。目前,许多发动机的曲轴和凸轮轴传感器信号已不再是正弦波和方波等传统信号,而是多种复杂波形信号。为了能够提供这种信号,本文研究并设计了一种能够产生复杂波形的低成本任意波形发生器(Arbitrary Waveform Generator-AWG)。 本文提出的任意波形发生器依据直接数字频率合成(Direct Digial FrequencySynthesis-DDFS)原理,采用自行设计现场可编程门阵列(FPGA)的方案实现频率合成,扩展数据存储器存储波形的量化幅值(波形数据),在微控制单元(MCU)的控制与协调下输出频率和相位均可调的信号。 任意波形发生器主要由用户控制界面、DDFS模块、放大及滤波、微控制器系统和电源模块五部分组成。在设计中采用FPGA芯片EPF10K10QC208-4实现DDFS的硬件算法。波形调整及滤波由两级放大电路来完成:第一级对D/A输出信号进行调整;第二级完成信号滤波及信号幅值和偏移量的调节。电源模块利用三端集成稳压器进行电压值变换,利用极性转换芯片ICL7660实现正负极性转换。 该任意波形发生器与通用模拟信号源相比具有:输出频率误差小,分辨率高,可产生任意波形,成本低,体积小,使用方便,工作稳定等优点,十分适合汽车维修行业使用,具有较好的市场前景。
上传时间: 2013-04-24
上传用户:KIM66