虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

运动<b>目标</b>检测

  • VK3604A/B小体积蓝牙音箱4键触摸触控检测芯片多种输出方式选择:锁存/直接输出

    产品型号:VK3604A 产品品牌:VINKA/永嘉微电 封装形式:SOP16 产品年份:新年份 联 系 人:陈锐鸿 Q Q:361 888 5898 联系手机:188 2466 2436(信) 概述: VK3604/VK3604A具有4个触摸按键,可用来检测外部触摸按键上人手的触摸动作。该芯片具有较高的 集成度,仅需极少的外部组件便可实现触摸按键的检测。 提供了4路输出功能,可通过IO脚选择输出电平,输出模式,输出脚结构,单键/多键和最 长输出时间。芯片内部采用特殊的集成电路,具有高电源电压抑制比,可减少按键检测错误的 发生,此特性保证在不利环境条件的应用中芯片仍具有很高的可靠性。 此触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为各种触摸按键+IO输 出的应用提供了一种简单而又有效的实现方法。 特点: • 工作电压 2.4-5.5V • 待机电流7uA/3.3V,14uA/5V • 上电复位功能(POR) • 低压复位功能(LVR)  • 触摸输出响应时间:工作模式 48mS ,待机模式160mS • 通过AHLB脚选择输出电平:高电平有效或者低电平有效 • 通过TOG脚选择输出模式:直接输出或者锁存输出 • 通过SOD脚选择输出方式:CMOS输出或者开漏输出 • 通过SM脚选择输出:多键有效或者单键有效 • 通过MOT脚有效键最长输出时间:无穷大或者16S • 通过CS脚接对地电容调节整体灵敏度(1-47nF)  • 各触摸通道单独接对地小电容微调灵敏度(0-50pF) • 上电0.25S内为稳定时间,禁止触摸 • 上电后4S内自校准周期为64mS,4S无触摸后自校准周期为1S • 封装SOP16(150mil)(9.9mm x 3.9mm PP=1.27mm) ———————————————— 产品型号:VK3604B 产品品牌:VINKA/永嘉微电 封装形式:TSSOP16 产品年份:新年份 联 系 人:陈锐鸿 1.概述 VK3604B具有4个触摸按键,可用来检测外部触摸按键上人手的触摸动作。该芯片具有 较高的集成度,仅需极少的外部组件便可实现触摸按键的检测。 提供了4路直接输出功能。芯片内部采用特殊的集成电路,具有高电源电压抑制比,可 减少按键检测错误的发生,此特性保证在不利环境条件的应用中芯片仍具有很高的可靠性。 此触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为各种触摸按键+IO 输出的应用提供了一种简单而又有效的实现方法。   特点  • 工作电压 2.4-5.5V • 待机电流7uA/3.3V,14uA/5V • 上电复位功能(POR) • 低压复位功能(LVR)  • 触摸输出响应时间:  工作模式 48mS 待机模式160mS • CMOS输出,低电平有效,支持多键  • 有效键最长输出16S • 无触摸4S自动校准  • 专用脚接对地电容调节灵敏度(1-47nF)  • 各触摸通道单独接对地小电容微调灵敏度(0-50pF). • 上电0.25S内为稳定时间,禁止触摸. • 封装 TSSOP16L(4.9mm x 3.9mm PP=1.00mm) KPP841 标准触控IC-电池供电系列: VKD223EB --- 工作电压/电流:2.0V-5.5V/5uA-3V   感应通道数:1    通讯界面  最长回应时间快速模式60mS,低功耗模式220ms    封装:SOT23-6 VKD223B ---  工作电压/电流:2.0V-5.5V/5uA-3V   感应通道数:1    通讯界面   最长回应时间快速模式60mS,低功耗模式220ms    封装:SOT23-6 VKD233DB --- 工作电压/电流:2.4V-5.5V/2.5uA-3V  1感应按键  封装:SOT23-6   通讯界面:直接输出,锁存(toggle)输出  低功耗模式电流2.5uA-3V VKD233DH ---工作电压/电流:2.4V-5.5V/2.5uA-3V  1感应按键  封装:SOT23-6  通讯界面:直接输出,锁存(toggle)输出  有效键最长时间检测16S VKD233DS --- 工作电压/电流:2.4V-5.5V/2.5uA-3V  1感应按键  封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出  低功耗模式电流2.5uA-3V VKD233DR --- 工作电压/电流:2.4V-5.5V/1.5uA-3V  1感应按键  封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出  低功耗模式电流1.5uA-3V VKD233DG --- 工作电压/电流:2.4V-5.5V/2.5uA-3V  1感应按键  封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出   低功耗模式电流2.5uA-3V  VKD233DQ --- 工作电压/电流:2.4V-5.5V/5uA-3V  1感应按键  封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出    低功耗模式电流5uA-3V  VKD233DM --- 工作电压/电流:2.4V-5.5V/5uA-3V  1感应按键  封装:SOT23-6 (开漏输出) 通讯界面:开漏输出,锁存(toggle)输出    低功耗模式电流5uA-3V  VKD232C  --- 工作电压/电流:2.4V-5.5V/2.5uA-3V   感应通道数:2  封装:SOT23-6   通讯界面:直接输出,低电平有效  固定为多键输出模式,内建稳压电路 MTP触摸IC——VK36N系列抗电源辐射及手机干扰: VK3601L  --- 工作电压/电流:2.4V-5.5V/4UA-3V3  感应通道数:1  1对1直接输出 待机电流小,抗电源及手机干扰,可通过CAP调节灵敏  封装:SOT23-6 VK36N1D --- 工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:1  1对1直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6 VK36N2P --- 工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:2    脉冲输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6 VK3602XS ---工作电压/电流:2.4V-5.5V/60UA-3V  感应通道数:2  2对2锁存输出 低功耗模式电流8uA-3V,抗电源辐射干扰,宽供电电压   封装:SOP8 VK3602K --- 工作电压/电流:2.4V-5.5V/60UA-3V   感应通道数:2   2对2直接输出 低功耗模式电流8uA-3V,抗电源辐射干扰,宽供电电压   封装:SOP8 VK36N2D --- 工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:2   1对1直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOP8 VK36N3BT ---工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:3  BCD码锁存输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏  封装:SOP8 VK36N3BD ---工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:3  BCD码直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏  封装:SOP8 VK36N3BO ---工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:3  BCD码开漏输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP8/DFN8(超小超薄体积) VK36N3D --- 工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:3  1对1直接输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N4B ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:4    BCD输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N4I---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:4    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N5D ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:5   1对1直接输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N5B ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:5    BCD输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N5I ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:5    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N6D --- 工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:6   1对1直接输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N6B ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:6    BCD输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N6I ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:6    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N7B ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:7    BCD输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N7I ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:7    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N8B ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:8    BCD输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N8I ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:8    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N9I ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:9    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N10I ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:10    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) 1-8点高灵敏度液体水位检测IC——VK36W系列 VK36W1D  ---工作电压/电流:2.2V-5.5V/10UA-3V3  1对1直接输出  水位检测通道:1 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOT23-6 备注:1. 开漏输出低电平有效  2、适合需要抗干扰性好的应用 VK36W2D  ---工作电压/电流:2.2V-5.5V/10UA-3V3  1对1直接输出  水位检测通道:2 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP8 备注:1.  1对1直接输出   2、输出模式/输出电平可通过IO选择 VK36W4D  ---工作电压/电流:2.2V-5.5V/10UA-3V3  1对1直接输出  水位检测通道:4 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1.  1对1直接输出   2、输出模式/输出电平可通过IO选择 VK36W6D  ---工作电压/电流:2.2V-5.5V/10UA-3V3  1对1直接输出  水位检测通道:6 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1.  1对1直接输出    2、输出模式/输出电平可通过IO选择 VK36W8I  ---工作电压/电流:2.2V-5.5V/10UA-3V3  I2C输出    水位检测通道:8 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1.  IIC+INT输出     2、输出模式/输出电平可通过IO选择  KPP841

    标签: 3604 输出 VK 体积 蓝牙音箱 检测 方式 芯片 触控 锁存

    上传时间: 2022-04-11

    上传用户:shubashushi66

  • 基于嵌入式ARM的远程视频监控系统研究

    随着科技的进步,视频监控系统正在向嵌入式、数字化、网络化方向发展。嵌入式视频监控系统充分利用大规模集成电路和网络的科技成果,实现了体积小巧、性能稳定、通讯便利的监控产品。 本文以S3C2410为核心硬件平台开发了基于嵌入式的远程视频监控系统,并对关键技术进行了论述和研究。首先给出了系统总体软硬件设计方案,针对本系统硬件对vivi进行了修改和移植,对编译和移植Linux内核以及制作YAFFS文件系统也做了深入的研究,重点讨论了在嵌入式Linux操作系统下开发USB接口摄像头驱动程序和利用linux提供的Video4Linux API函数实现视频数据采集,其次采用背景差法实现了对视频图像中运动目标的检测,然后通过MJPEG压缩算法实现了视频数据压缩,接着介绍了在Linux下基于TCP/IP协议的socket编程,实现了视频数据的网络发送。最后着重论述了嵌入式Web服务器的设计,编写了视频监控主界面程序,并实现了基于B/S模式的视频监控系统结构。 本系统采用模块化设计方法,使得设计更加简洁、高效,具有良好的扩展性和易用性,有利于系统升级。另外采用嵌入式的方法,系统成本较低,易于推广使用。

    标签: ARM 嵌入式 远程视频监控 系统研究

    上传时间: 2013-04-24

    上传用户:小枫残月

  • 基于FPGA的红外目标检测技术研究

    摘要:"红外弱小目标检测"是红外搜索跟踪系统、红外雷达预警系统、红外成像跟踪系统的核心技术,因此红外小目标的检测是当前一项重要的研究课题.目前的发展方向是研究运算量小、性能高、利于硬件实时实现的检测和跟踪算法.该文在前人研究的基础上,着重研究了Marr视觉计算理论在红外小目标检测技术中的应用.从Marr算法的理论基础——高斯平滑滤波器与拉普拉斯算子的相关知识以及Marr的计算视觉理论基础开始,进行了 2G(Laplacian of Gaussian,高斯—拉普拉斯)滤波器、LoG(Laplacian ofGaussian,高斯—拉普拉斯)模板以及 2G滤波器在人类视觉、边缘检测、边缘处理的物理意义以及神经生理学意义方面的分析讨论,提出了易于FPGA(Field Programmable Gate Array,现场可编程门阵列)实现的基于Marr计算视觉的红外图像小目标检测方法.该方法可根据目标大小自动设计检测模板,在滤除不相关的噪声的同时又保留闭合的目标边缘,从而检测出目标.将该方法用FPGA实现,满足了检测过程中的实时性.考虑到工程中的应用,该文对该方法在FPGA中的具体实现给出了设计总体思路和详细流程.由于FPGA具有对图像数据的实时处理能力,而且该算法在FPGA中的具体实现中对资源的合理使用进行了综合考虑,因此该算法能够实时、有效地实现目标检测.并在此基础上对小目标的检测研究前景进行展望.

    标签: FPGA 红外目标检测 技术研究

    上传时间: 2013-07-04

    上传用户:萌萌哒小森森

  • 基于DSP和FPGA的运动控制技术的研究

    该课题通过对开放式数控技术的全面调研和对运动控制技术的深入研究,并针对国内运动控制技术的研究起步较晚的现状,结合激光雕刻领域的具体需要,紧跟当前运动控制技术研究的发展趋势,吸收了世界开放式数控技术和相关运动控制技术的最新成果,采纳了基于DSP和FPGA的方案,研制了一款比较新颖的、功能强大的、具有很大柔性的四轴多功能运动控制卡.该论文主要内容如下:首先,通过对制造业、开放式数控系统、运动控制卡等行业现状的全面调研,基于对运动系统控制技术的深入学习,在比较了几种常用的运动控制方案的基础上,确定了基于DSP和FPGA的运动控制设计方案,并规划了板卡的总体结构.其次,针对运动控制中的一些具体问题,如高速、高精度、运动平稳性、实时控制以及多轴联动等,在FPGA上设计了功能相互独立的四轴运动控制电路,仔细规划并定义了各个寄存器的具体功能,设计了功能完善的加/减速控制电路、变频分配电路、倍频分频电路和三个功能各异的计数器电路等,完全实现了S-曲线升降速运动、自动降速点运动、A/B相编码器倍频计数电路等特殊功能.再次,介绍了DSP在运动控制中的作用,合理规划了DSP指令的形成过程,并对DSP软件的具体实现进行了框架性的设计.然后,根据光电隔离原理设计了数字输入/输出电路;结合DAC原理设计了四路模拟输出电路;实现了PCI接口电路的设计;并针对常见的干扰现象,提出了有效的抗干扰措施.最后,利用运动控制卡强大的运动控制功能,并针对激光雕刻行业进行大幅图形扫描时需要实时处理大量的图形数据的特别需要,在板卡第四轴完全实现了激光控制功能,并基于FPGA内部的16KBit块RAM,开辟了大量数据区以便进行大幅图形的实时处理.

    标签: FPGA DSP 运动控制

    上传时间: 2013-06-09

    上传用户:youlongjian0

  • 基于FPGA的视频图像检测技术

    在图像处理及检测系统中,实时性要求往往影响着系统处理速度的性能。本文在分析研究视频检测技术及方法的基础上,应用嵌入式系统设计和图像处理技术,以交通信息视频检测系统为研究背景,展开了基于FPGA视频图像检测技术的研究与应用,通过系统仿真验证了基于FPGA架构的图像并行处理和检测系统具有较高的实时处理能力,能够准确并稳定地检测出运动目标的信息。可见FPGA对提高视频检测及处理的实时性是一个较好的选择。 本文主要研究的内容有: 1.分析研究了视频图像检测技术,针对传统基于PC构架和DSP处理器的视频检测系统的弊端,并从可靠性、稳定性、实时性和开发成本等因素考虑,提出了以FPGA芯片作为中央处理器的嵌入式并行数据处理系统的设计方案。 2.应用模块化的硬件设计方法,构建了新一代嵌入式视频检测系统的硬件平台。该系统由异步FIFO模块、图像空间转换模块、SRAM帧存控制模块、图像预处理模块和图像检测模块等组成,较好地解决了图像采样存储、处理和传输的问题,并为以后系统功能的扩展奠定了良好的基础。 3.在深入研究了线性与非线性滤波几种图像处理算法,分析比较了各自的优缺点的基础上,本文提出一种适合于FPGA的快速图像中值滤波算法,并给出该算法的硬件实现结构图,应用VHDL硬件描述语言编程、实现,仿真结果表明,快速中值滤波算法的处理速度较传统算法提高了50%,更有效地降低了系统资源占用率和提高了系统运算速度,增强了检测系统的实时性能。 4.研究了基于视频的交通车流量检测算法,重点讨论背景差分法,图像二值化以及利用直方图分析方法确定二值化的阈值,并对图像进行了直方图均衡处理,提高图像检测精度。并结合嵌入式系统处理技术,在FPGA系统上研究设计了这些算法的硬件实现结构,用VHDL语言实现,并对各个模块及相应算法做出了功能仿真和性能分析。 5.系统仿真与验证是整个FPGA设计流程中最重要的步骤,针对现有仿真工具用手动设置输入波形工作量大等弊病,本文提出了一种VHDL测试基准(TestBench)方法解决系统输入源仿真问题,用TEXTIO程序包设计了MATLAB与FPGA仿真软件的接口,很好地解决了仿真测试中因测试向量庞大而难以手动输入的问题。并将系统的仿真结果数据在MATLAB上还原为图像,方便了系统测试结果的分析与调试。系统测试的结果表明,运动目标的检测基本符合要求,可以排除行走路人等移动物体(除车辆外)的噪声干扰,有效地检测出正确的目标。 本文主要研究了基于FPGA片上系统的图像处理及检测技术,针对FPGA技术的特点对某些算法提出了改进,并在MATLAB、QuartusⅡ和ModelSim软件开发平台上仿真实现,仿真结果达到预期目标。本文的研究对智能化交通监控系统的车流量检测做了有益探索,对其他场合的图像高速处理及检测也具有一定的参考价值。

    标签: FPGA 视频图像 检测技术

    上传时间: 2013-07-13

    上传用户:woshiayin

  • 基于DSP和FPGA的超大视场红外目标检测图像处理系统设计

    · 摘要:  研制了一种基于DSP(TMS320C6414)和FPGA(XC2V2000)的超大视场红外目标实时检测图像处理系统.文章详细分析了系统中图像采集、图像处理、伺服系统以及人机接口等模块的工作原理和流程.通过在此系统上运行超大视场红外图像的目标检测与跟踪算法,试验表明目标检测与跟踪效果明显.系统采用模块化设计,计算效率高,工作稳定可靠.  

    标签: FPGA DSP 大视场 图像处理

    上传时间: 2013-07-17

    上传用户:xiaoyunyun

  • 基于神经网络的GSM无源探测系统目标检测算法

    对于GSM相控阵无源雷达接收机获取的目标数据提出一种用最佳后验感知的神经网络进行处理的算法,在复杂的杂波及噪声背景下,相比于流行的卡尔曼滤波,提高了目标的检测跟踪精度,对促进GSM无源探测系统实用化具有重要意义。

    标签: GSM 神经网络 无源 探测系统

    上传时间: 2013-11-06

    上传用户:hhkpj

  • 运动人体检测和二维关键点提取

    给出了一种运动人体区域的检测及其对应的二维关键点的提取方法。首先运用帧差法构建一个自适应的背景模型以达到背景初始化和背景更新的目的。接着用减背景法实现二维运动人体区域的检测。最后将检测到的运动人体区域,通过运用APAR(anti-paralle lines)区域法实现对运动人体关键点的提取。

    标签: 运动人体检测 二维

    上传时间: 2013-10-25

    上传用户:lz4v4

  • * 高斯列主元素消去法求解矩阵方程AX=B,其中A是N*N的矩阵,B是N*M矩阵 * 输入: n----方阵A的行数 * a----矩阵A * m----矩阵B的列数 * b----矩

    * 高斯列主元素消去法求解矩阵方程AX=B,其中A是N*N的矩阵,B是N*M矩阵 * 输入: n----方阵A的行数 * a----矩阵A * m----矩阵B的列数 * b----矩阵B * 输出: det----矩阵A的行列式值 * a----A消元后的上三角矩阵 * b----矩阵方程的解X

    标签: 矩阵 AX 高斯 元素

    上传时间: 2015-07-26

    上传用户:xauthu

  • 根据二维空间内目标作匀速直线运动和匀速圆周运动的特点

    根据二维空间内目标作匀速直线运动和匀速圆周运动的特点,在建立目标运动模型和观测模型的基础上采用基于交互多模算法(IMM)的卡尔曼滤波器对机动目标进行跟踪。仿真结果表明,该算法不仅能够对匀速直线运动和匀速圆周运动的目标进行跟踪,而且在运动模型发生变化时,滤波误差也比较小。 关键词:卡尔曼滤波器;目标跟踪;机动;交互多模(IMM)

    标签: 匀速 二维 直线

    上传时间: 2013-12-17

    上传用户:lixinxiang