用单片机AT89C51改造普通双桶洗衣机:AT89C2051作为AT89C51的简化版虽然去掉了P0、P2等端口,使I/O口减少了,但是却增加了一个电压比较器,因此其功能在某些方面反而有所增强,如能用来处理模拟量、进行简单的模数转换等。本文利用这一功能设计了一个数字电容表,可测量容量小于2微法的电容器的容量,采用3位半数字显示,最大显示值为1999,读数单位统一采用毫微法(nf),量程分四档,读数分别乘以相应的倍率。电路工作原理 本数字电容表以电容器的充电规律作为测量依据,测试原理见图1。电源电路图。 压E+经电阻R给被测电容CX充电,CX两端原电压随充电时间的增加而上升。当充电时间t等于RC时间常数τ时,CX两端电压约为电源电压的63.2%,即0.632E+。数字电容表就是以该电压作为测试基准电压,测量电容器充电达到该电压的时间,便能知道电容器的容量。例如,设电阻R的阻值为1千欧,CX两端电压上升到0.632E+所需的时间为1毫秒,那么由公式τ=RC可知CX的容量为1微法。 测量电路如图2所示。A为AT89C2051内部构造的电压比较器,AT89C2051 图2 的P1.0和P1.1口除了作I/O口外,还有一个功能是作为电压比较器的输入端,P1.0为同相输入端,P1.1为反相输入端,电压比较器的比较结果存入P3.6口对应的寄存器,P3.6口在AT89C2051外部无引脚。电压比较器的基准电压设定为0.632E+,在CX两端电压从0升到0.632E+的过程中,P3.6口输出为0,当电池电压CX两端电压一旦超过0.632E+时,P3.6口输出变为1。以P3.6口的输出电平为依据,用AT89C2051内部的定时器T0对充电时间进行计数,再将计数结果显示出来即得出测量结果。整机电路见图3。电路由单片机电路、电容充电测量电路和数码显示电路等 图3 部分组成。AT89C2051内部的电压比较器和电阻R2-R7等组成测量电路,其中R2-R5为量程电阻,由波段开关S1选择使用,电压比较器的基准电压由5V电源电压经R6、RP1、R7分压后得到,调节RP1可调整基准电压。当P1.2口在程序的控制下输出高电平时,电容CX即开始充电。量程电阻R2-R5每档以10倍递减,故每档显示读数以10倍递增。由于单片机内部P1.2口的上拉电阻经实测约为200K,其输出电平不能作为充电电压用,故用R5兼作其上拉电阻,由于其它三个充电电阻和R5是串联关系,因此R2、R3、R4应由标准值减去1K,分别为999K、99K、9K。由于999K和1M相对误差较小,所以R2还是取1M。数码管DS1-DS4、电阻R8-R14等组成数码显示电路。本机采用动态扫描显示的方式,用软件对字形码译码。P3.0-P3.5、P3.7口作数码显示七段笔划字形码的输出,P1.3-P1.6口作四个数码管的动态扫描位驱动码输出。这里采用了共阴数码管,由于AT89C2051的P1.3-P1.6口有25mA的下拉电流能力,所以不用三极管就能驱动数码管。R8-R14为P3.0-P3.5、P3.7口的上拉电阻,用以驱动数码管的各字段,当P3的某一端口输出低电平时其对应的字段笔划不点亮,而当其输出高电平时,则对应的上拉电阻即能点亮相应的字段笔划。
上传时间: 2013-12-31
上传用户:ming529
用AT89C2051单片机制作的数字电容表:AT89C2051作为AT89C51的简化版虽然去掉了P0、P2等端口,使I/O口减少了,但是却增加了一个电压比较器,因此其功能在某些方面反而有所增强,如能用来处理模拟量、进行简单的模数转换等。本文利用这一功能设计了一个数字电容表,可测量容量小于2微法的电容器的容量,采用3位半数字显示,最大显示值为1999,读数单位统一采用毫微法(nf),量程分四档,读数分别乘以相应的倍率。
上传时间: 2013-11-19
上传用户:wuyuying
用单片机制作多功能莫尔斯码电路:用单片机制作多功能莫尔斯码电路莫尔斯电码通信有着悠久的历史,尽管它已被现代通信方式所取代,但在业余无线电通信和特殊的专业场合仍具有重要的地位,这是因为等幅电码通信的抗干扰能力是其它任何一种通信方式都无法相比的。在短波波段用几瓦的功率即可进行国际间的通信,收发射设备简单易制成本低廉,所以深受业余无线电爱好者的喜爱,是业余无线电高手必备的技能。要想熟练掌握莫尔斯电码的收发技术除了持之以恒的毅力外,还需要相关的设备。设计本电路的目的就是给爱好者提供一个实用和训练的工具。 一、功能简介 本电路可以配合自动键体和手动键体,产生莫尔斯码控制信号,设有16种速度,从初学者到操作高手都能适用。监听音调也有16种,均可以通过功能键进行选择。可以按程序中设定好的呼号自动呼叫,设有听抄练习功能,听抄练习有短码和混合码两种模式,分别对10个数字和常用的38个混合码模拟随机取样,产生分组报码,供爱好者提高抄收水平之用,速度低4档的听抄练习是专为初学者所设,内容是时间间隔较长的单字符。设有PTT开关键,可以决定是否控制发射机工作,不需要反复通断控制线。无论当前处于呼叫状态还是听抄状态只要电键接点接通则自动转到人工发报程序。4分钟内不使用电路将自动关闭电源,只有按复位键才能重新开始工作。先按住听抄练习键复位则进入短码练习状态,其它功能不变。从开机到自动关机执行每个功能都有不同的莫尔斯码提示音。本电路具有较强的抗高低频干扰的能力和使用方便的大电流开关接口,以适应不同的发射设备。 二、硬件电路原理硬件电路如图1所示。设计电路的目的在于方便实用,以免在紧张的操作中失误,所以除了听抄练习键外其它键没有定义复用功能。各键的作用在图中已经标出。PTT控制在每次复位时处于关闭状态,每按动一次PTT功能键则改变一次状态,这样可以使用软件开关控制发射。 PTT处于控制状态时发光二极管随控制信号闪亮。考虑到自制设备及淘汰军用设备与高档设备控制电流的不同,PTT开关管采用了2SC2073,可以承受500mA的电流,同时还增加了无极性PTT开关电路,无论外部被控制的端口直流极性如何加到VT3的极性始终不变,供有兴趣的爱好者实验。应该注意,如果被控制的负载是感性,则电感两端必须并联续流二极管,除自制设备外成品机在这方面一般没有什么问题。手动键只有一个接点,接通后产生连续的音频和发射控制信号。在本电路中手动键的输入端是P1.5 ,程序不断检测P1.5电平,当按键按下时P1.5电平为0,程序转入手动键子程序。 自动键的接点分别接到P1.3和P1.4 ,同样当程序检测到有接点闭合时便自动产生“点”或“划”。音频信号从P输出,经VT1放大后推动扬声器发音。单片机的I/O口在输入状态下阻抗较高,容易受到高低频信号干扰,所以在每个输入端口和三极管的be端并联电阻和高频旁路电容,确保在较长的电键连线和大功率发射时电路工作稳定。图2是印刷电路版图,尺寸为110mmX85mm,扬声器用粘合剂直接粘接在电路版有铜箔的面。 三、软件设计方法 “点”时间长度是莫尔斯电码中的基本时间单位。按规定“划”的时间长度不小于三个“点”,同字符中“点”与“划”的间隔不小于一个“点”,字符之间不小于一个“划”,词与词之间不应小于五个“点”。在本程序中用条件转移指令来产生“点”时间长度。通过速度功能键功可以设置16种延时参数。用T0中断产生监听音频信号,并将中断设为优先级,保证在听觉上纯正悦耳。T1用于自动关机计时,如果不使用任何功能四分钟后将向PCON 位写1,单片机进入休眠状态,此时耗电量仅有几个微安。自动键的“点”或“划”以及手动键的连续发音都是子程序的反复调用。P1.2对地短接时自动呼叫可设定为另一内容。为了便于熟悉汇编语言的读者对发音内容进行修改,这里介绍发音字符的编码方法。莫尔斯码的信息与计算机中二进制恰好相同,我们可以用0表示“点”,用1表示“划”。提示音、自动呼叫、听抄内容等字符是预先按一定编码方式存储在程序中的常数。每个字符的莫尔斯码一般是由1至6位“点”、“划”组成,也就是发音次数最多6次。程序中每个字符占用1个字节,字符时间间隔不占用字节,但更长的延时或发音结束信息占用一个字节。我们用字节的低三位表示字节的性质,对于5次及5次以下发音的字符我们用存储器的高5位存储发音信息,发音顺序由高位至低位,用低3位存储发音次数,发音时将数据送入累加器A,先得到发音次数,然后使A左环移,对E0进行位寻址,判断是发“点”还是“划”,环移次数由发音次数决定。对于6次发音的字符不能完全按照上述编码规则,否则会出现信息重叠,如果是6次发音且最后一次是“划”我们把发音次数定义为111B,因为这时第6次位寻址得到的是1。如果第6次发音是“点”,那么这个字符的低三位定义为000B。字符间隔时间由程序自动产生,更长的时间隔或结束标志由字节低三位110B来定义,高半字节表示字符间隔的倍数,例如26H表示再加两倍时间间隔。如果字节为06H则表示读字符程序结束,返回主程序。更详细的内容不再赘述,读者可阅读源程序。四、使用注意事项手动键的操作难度相对大一些,时间节拍全由人掌握,其特点是发出的电码带有“人情味”。自动键的“点”、“划”靠电路产生,发音标准,容易操作,而且可以达到相当快的速度,长时间工作也不易疲劳。在干扰较大、信号微弱的条件下自动键码的辨别程度好于手动键码。初学者初次使用手动键练习发报要有老师指导,且不可我行我素,一旦养成不正确的手法则很难纠正。在电台上时常听到一些让对方难以抄收的电码,这可能会使对方反感而拒绝回答。使用自动键也应在一定的听抄基础上再去练习。在暂时找不老师的情况下可多练习听力,这对于今后能够发出标准正确的电码非常有益。
上传时间: 2013-10-31
上传用户:sdq_123
当拿到一张CASE单时,首先得确定的是能用什么母体才能实现此功能,然后才能展开对外围硬件电路的设计,因此首先得了解每个母体的基本功能及特点,下面大至的介绍一下本公司常用的IC:单芯片解决方案• SN8P1900 系列– 高精度 16-Bit 模数转换器– 可编程运算放大器 (PGIA)• 信号放大低漂移: 2V• 放大倍数可编程: 1/16/64/128 倍– 升压- 稳压调节器 (Charge-Pump Regulator)• 电源输入: 2.4V ~ 5V• 稳压输出: e.g. 3.8V at SN8P1909– 内置液晶驱动电路 (LCD Driver)– 单芯片解决方案 • 耳温枪 SN8P1909 LQFP 80 Pins• 5000 解析度量测器 SN8P1908 LQFP 64 Pins• 体重计 SN8P1907 SSOP 48 Pins单芯片解决方案• SN8P1820 系列– 精确的12-Bit 模数转换器– 可编程运算放大器 (PGIA)• Gain Stage One: Low Offset 5V, Gain: 16/32/64/128• Gain Stage One: Low Offset 2mV, Gain: 1.3 ~ 2.5– 升压- 稳压调节器• 电源输入: 2.4V ~ 5V• 稳压输出: e.g. 3.8V at SN8P1829– 内置可编程运算放大电路– 内置液晶驱动电路 – 单芯片解决方案 • 电子医疗器 SN8P1829 LQFP 80 Pins 高速/低功耗/高可靠性微控制器• 最新SN8P2000 系列– SN8P2500/2600/2700 系列– 高度抗交流杂讯能力• 标准瞬间电压脉冲群测试 (EFT): IEC 1000-4-4• 杂讯直接灌入芯片电源输入端• 只需添加1颗 2.2F/50V 旁路电容• 测试指标稳超 4000V (欧规)– 高可靠性复位电路保证系统正常运行• 支持外部复位和内部上电复位• 内置1.8V 低电压侦测可靠复位电路• 内置看门狗计时器保证程序跳飞可靠复位– 高抗静电/栓锁效应能力– 芯片工作温度有所提高: -200C ~ 700C 工规芯片温度: -400C ~ 850C 高速/低功耗/高可靠性微控制器• 最新 SN8P2000 系列– SN8P2500/2600/2700 系列– 1T 精简指令级结构• 1T: 一个外部振荡周期执行一条指令• 工作速度可达16 MIPS / 16 MHz Crystal– 工作消耗电流 < 2mA at 1-MIPS/5V– 睡眠模式下消耗电流 < 1A / 5V额外功能• 高速脉宽调制输出 (PWM)– 8-Bit PWM up to 23 KHz at 12 MHz System Clock– 6-Bit PWM up to 93 KHz at 12 MHz System Clock– 4-Bit PWM up to 375 KHz at 12 MHz System Clock• 内置高速16 MHz RC振荡器 (SN8P2501A)• 电压变化唤醒功能• 可编程控制沿触发/中断功能– 上升沿 / 下降沿 / 双沿触发• 串行编程接口
上传时间: 2013-10-21
上传用户:jiahao131
通用的多电源总线,如VME、VXI 和PCI 总线,都可提供功率有限的3.3V、5V 和±12V(或±24V)电源,如果在这些系统中添加设备(如插卡等),则需要额外的3.3V或5V电源,这个电源通常由负载较轻的-12V电源提供。图1 电路,将-12V 电压升压到15.3V(相对于-12V 电压),进而得到3.3V 的电源电压,输出电流可达300mA。Q2 将3.3V 电压转换成适当的电压(-10.75V)反馈给IC1 的FB 引脚,PWM 升压控制器可提供1W 的输出功率,转换效率为83%。整个电路大约占6.25Cm2的线路板尺寸,适用于依靠台式PC机电源供电,需要提供1W输出功率的应用,这种应用中,由于-12V总线电压限制在1.2W以内,因此需要保证高于83%的转换效率。由于限流电阻(RSENSE)将峰值电流限制在120mA,N 沟道MOSFET(Q1)可选用廉价的逻辑电平驱动型场效应管,R1、R2 设置输出电压(3.3V 或5V)。IC1 平衡端(Pin5)的反馈电压高于PGND引脚(Pin7)1.25V,因此:VFB = -12V + 1.25V = - 10.75V选择电阻R1后,可确定:I2 = 1.25V / R1 = 1.25V / 12.1kΩ = 103μA可由下式确定R2:R2 = (VOUT - VBE)/ I2 =(3.3V - 0.7V)/ 103μA = 25.2 kΩ图1 中,IC1 的开关频率允许通过外部电阻设置,频率范围为100kHz 至500kHz,有利于RF、数据采集模块等产品的设计。当选择较高的开关频率时,能够保证较高的转换效率,并可选用较小的电感和电容。为避免电流倒流,可在电路中增加一个与R1串联的二极管。
上传时间: 2013-10-17
上传用户:jixingjie
LTC1732 是LINEAR TECHNOLOGY 公司推出的锂离子电池充电控制集成电路芯片。它具有电池插入检测和自动低压电池充电功能。文章介绍了该芯片的结构、特点、工作原理及应用信息,给出了典型的应用电路。 LTC1732 是LINEAR TECHNOLOGY 公司生产的锂-离子(Li-离子)电池恒流/恒压线性充电控制器。它也可以对镍-镉(NiCd)和镍-氢(NiMH)电池恒流充电。其充电电流可通过外部传感电阻器编程到7%(最大值)的精度。最终的浮动电压精度为1%。利用LTC1732 的SEL 端可为4.1V 或4.2V 电池充电。当输入电源撤消后,LTC1732 可自动进入低电流睡眠状态,以使消耗电流下降到7μA。LTC1732 的内部比较器用于检测充电结束条件(C/10),而总的充电时间则是通过可编程计时器的外部电容来设置的。在电池完全放电后,控制器将自动以规定电流的10%对被充电电池进行慢速充电直到电池电压超过2.457V。当放电后的电池插入充电器或当输入电源接通时,LTC1732 将开始重新充电。另外,如果电池一直插入在充电器且在电池电压降到3.8V(LTC1732-4)或4.05V(LTC1732-4.2)以下时,充电器也将开始重新充电。LTC1732 的其它主特点如下:●具有1%的预置充电电压精度;●输入电压范围4.5V~12V;●充电电流可编程控制;●具有C/10 充电电流检测输出;●可编程控制充电终端计时;●带有低电压电池自动小电流充电模式;●可编程控制恒定电流接通模式;●具有电池插入检测和自动低压电流充电功能;●带有输入电源(隔离适配器)检测输出;●LTC1732-4.2 型器件的再充电阈值电压为4.05V;●LTC1732-4 型器件的再充电阈值电压为3.8V。
上传时间: 2013-11-12
上传用户:semi1981
PCF8563 是低功耗的CMOS 实时时钟日历芯片.它提供一个可编程时钟输出一个中断输出和掉电检测器.所有的地址和数据通过I2C 总线接口串行传递最大总线速度为400Kbits/s 每次读写数据后内嵌的字地址寄存器会自动产生增量.2 特性 低工作电流典型值为0.25 A VDD=3.0V Tamb=25 时; 世纪标志; 大工作电压范围1.0 5.5V; 低休眠电流典型值为0.25 A(VDD=3.0V,Tamb=25 ); 400KHz 的I2C 总线接口VDD=1.8 5.5V 时; 可编程时钟输出频率为32.768KHz 1024Hz 32Hz 1Hz; 报警和定时器; 内部集成的振荡器电容片内电源复位功能掉电检测器; I2C 总线从地址读0A3H 写0A2H; 开漏中断引脚
上传时间: 2013-12-16
上传用户:liuchee
Σ-ΔA/D技术具有高分辨率、高线性度和低成本的特点。本文基于TI公司的MSP430F1121单片机,介绍了采用内置比较器和外围电路构成类似于Σ-△的高精度A/D实现方案,适合用于对温度、压力和电压等缓慢变化信号的采集应用。 在各种A/D转换器中,最常用是逐次逼近法(SAR)A/D,该类器件具有转换时间固定且快速的特点,但难以显著提高分辨率;积分型A/D 有较强的抗干扰能力,但转换时间较长;过采样Σ-ΔA/D由于其高分辨率,高线性度及低成本的特点,正得到越来越多的应用。根据这些特点,本文以TI公司的MSP430F1121单片机实现了一种类似于Σ-ΔA/D技术的高精度转换器方案。 MSP430F1121是16位RISC结构的FLASH型单片机,该芯片有14个双向I/O口并兼有中断功能,一个16位定时器兼有计数和定时功能。I/O口输出高电平时电压接近Vcc,低电平时接近Vss,因此,一个I/O口可以看作一位DAC,具有PWM功能。 该芯片具有一个内置模拟电压比较器,只须外接一只电阻和电容即可构成一个类似于Σ-Δ技术的高精度单斜率A/D。一般而言,比较器在使用过程中会受到两种因素的影响,一种是比较器输入端的偏置电压的积累;另一种是两个输入端电压接近到一程度时,输出端会产生振荡。 MSP430F1121单片机在比较器两输入端对应的单片机端口与片外输入信号的连接线路保持不变的情况下,可通过软件将比较器两输入端与对应的单片机端口的连接线路交换,并同时将比较器的输出极性变换,这样抵消了比较器的输入端累积的偏置电压。通过在内部将输出连接到低通滤波器后,即使在比较器输入端两比较电压非常接近,经过滤波后也不会出现输出端的振荡现象,从而消除了输出端震荡的问题。利用内置比较器实现高精度A/D图1是一个可直接使用的A/D转换方案,该方案是一个高精度的积分型A/D转换器。其基本原理是用单一的I/O端口,执行1位的数模转换,以比较器的输出作反馈,来维持Vout与Vin相等。图1:利用MSP430F1121实现的实用A/D转换器电路方案。
上传时间: 2013-11-10
上传用户:lliuhhui
6.1 存储器概述1、存储器定义 在微机系统中凡能存储程序和数据的部件统称为存储器。2、存储器分类 微机系统中的存储器分为内存和外存两类。3、内存储器的组成 微机系统中的存储器由半导体存储器芯片组成。 单片机内部有存储器,当单片机内部的存储器不够用时,可以外扩存储器。外扩的存储器就是由半导体存储器芯片组成的。 当用半导体存储器芯片组成内存时必须满足个要求:①每个存储单元一定要有8个位。②存储单元的个数满足系统要求。注意:内存的容量是指它所含存储单元的个数(每个存储单元一定要有8个位,可以存储8位二进制信息)。6.2 半导体存储器由于集成工艺水平的限制,一个半导体存储器芯片上所集成的单元个数和每个单元的位数有限,用它构成内存时必须满足:内存容量和一个存储单元有8个位的要求,因此内存常常由多个半导体存储器芯片构成。 半导体存储器芯片的存储容量是指其上所含的基本存储电路的个数,用单元个数×位数表示。掌握:① 已知内存容量和半导体存储器芯片的容量,求用半导体存储器芯片构成内存时需要的芯片个数。② 内存的容量=末地址—首地址+1 半导体存储器芯片分成ROM和RAM两类。6.2.1 ROM芯片6.2.2 RAM芯片6.3 MCS-51单片机存储器扩展 在微机系统中存储器是必不可少。MCS51系列单片机内部的存储器不够用时需要外扩半导体存储器芯片,外扩的半导体存储器芯片与MCS51系列单片机通过三总线交换信息。二者连接时必须考虑如下问题:1.二者地址线、数据线、控制线的连接。2.工作速度的匹配。CPU在取指令和存储器读或写操作时,是有固定时序的,用户要根据这些来确定对存储器存取速度的要求,或在存储器已经确定的情况下,考虑是否需要Tw周期,以及如何实现。3.片选信号的产生。目前生产的存储器芯片,单片的容量仍然是有限的,通常总是要由许多片才能组成一个存储器,这里就有一个如何产生片选信号的问题。4.CPU的驱动能力 。在设计CPU芯片时,一般考虑其输出线的直流负载能力,为带一个TTL负载。现在的存储器一般都为MOS电路,直流负载很小,主要的负载是电容负载,故在小型系统中,CPU是可以直接与存储器相连的,而较大的系统中,若CPU的负载能力不能满足要求,可以(就要考虑CPU能否带得动,需要时就要加上缓冲器,)由缓冲器的输出再带负载。6.3.1 ROM芯片的扩展6.3.2 RAM芯片的扩展
标签: 存储器接口
上传时间: 2013-11-22
上传用户:moerwang
单片机基础知识单片机的外部结构:1、 DIP40双列直插;2、 P0,P1,P2,P3四个8位准双向I/O引脚;(作为I/O输入时,要先输出高电平)3、 电源VCC(PIN40)和地线GND(PIN20);4、 高电平复位RESET(PIN9);(10uF电容接VCC与RESET,即可实现上电复位)5、 内置振荡电路,外部只要接晶体至X1(PIN18)和X0(PIN19);(频率为主频的12倍)6、 程序配置EA(PIN31)接高电平VCC;(运行单片机内部ROM中的程序)7、 P3支持第二功能:RXD、TXD、INT0、INT1、T0、T1 单片机内部I/O部件:(所为学习单片机,实际上就是编程控制以下I/O部件,完成指定任务)1、 四个8位通用I/O端口,对应引脚P0、P1、P2和P3;2、 两个16位定时计数器;(TMOD,TCON,TL0,TH0,TL1,TH1)3、 一个串行通信接口;(SCON,SBUF)4、 一个中断控制器;(IE,IP)针对AT89C52单片机,头文件AT89x52.h给出了SFR特殊功能寄存器所有端口的定义。教科书的160页给出了针对MCS51系列单片机的C语言扩展变量类型。 C语言编程基础:1、 十六进制表示字节0x5a:二进制为01011010B;0x6E为01101110。2、 如果将一个16位二进数赋给一个8位的字节变量,则自动截断为低8位,而丢掉高8位。3、 ++var表示对变量var先增一;var—表示对变量后减一。4、 x |= 0x0f;表示为 x = x | 0x0f;5、 TMOD = ( TMOD & 0xf0 ) | 0x05;表示给变量TMOD的低四位赋值0x5,而不改变TMOD的高四位。6、 While( 1 ); 表示无限执行该语句,即死循环。语句后的分号表示空循环体,也就是{;}第一章 单片机最小应用系统:单片机最小系统的硬件原理接线图:1、 接电源:VCC(PIN40)、GND(PIN20)。加接退耦电容0.1uF2、 接晶体:X1(PIN18)、X2(PIN19)。注意标出晶体频率(选用12MHz),还有辅助电容30pF3、 接复位:RES(PIN9)。接上电复位电路,以及手动复位电路,分析复位工作原理4、 接配置:EA(PIN31)。说明原因。第二章 基本I/O口的应用第三章 显示驱动第七章 串行接口应用
标签: 单片机
上传时间: 2013-10-30
上传用户:athjac