虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

转换器电路

  • CCD相机广角镜头的光学系统设计

    从光学设计的观点来看:CCD实际上是光电信号接收器,也是探测器、光电能景转换器和光电图象转换器。它具有许多优点,如:频谱响应波段宽,从0.4~1.1um;灵敏度高,能探测较暗的光电信号,漫低照度为0.02bx(勒克可);一个更主要的优点是,光信号可以转换成电信号,即视频信号,通过电路处理和接口,可与微机对接,可存储、记录、显示,也可打印和进行各种信息处理。也就是说,CCD与光学系统相结合的光电光学系统,再与微机对接,可以使光学图象实时接收-处理-再现。这样的装置可改作为观测仪器、探测仪器、分析仪器、保密存储和记录仪器等。正因如此,在军事、工业、农业,深学等领域得到广泛的应用.随着CCD的应用,给光学镜头的设计就提出新的要求,要求光学系统的视场越大越好,即焦距越短越好;CCD光学镜头属于小孔径镜头系列,但为了增加光能,希望光学系统的相对孔径尽可能的增大,就是说要求设计出大孔径、大视场的光学镜头.

    标签: ccd相机 广角镜头 光学系统

    上传时间: 2022-06-20

    上传用户:qingfengchizhu

  • 多脉冲时差法超声波流量计的设计与实现.

    工业生产和科学研究过程中,流量测量必不可少,由于超声波流量计可以将超声换能器火装在管道外面进行非接触测量,无需中断管道,设计和安装方便,并且满足大部分工业生产的精度要求,近年来得到了广泛应用.本设计采用了多脉冲时差法测量技术,增强了系统的抗干扰性,改善了测量效果。系统的硬件部分以MSP430F155为控制核心,选用了高精度时间数字转换器TDC-GPI和复杂可编程逻辑器件spl.S11032等芯片.充分发挥了ispL.S1032的在系统可编程性,设计了超声波退耦合脉冲定时器、抗干扰滤波器、数字单稳态触发器等电路,实现了多脉冲的时间差测量,进一步提高了硬件抗干扰性,并且完成了系统时钟同步和电平转换的任务。通过芯片内部的门电路传播时延实现系统传播时间的测量,可以达到较高的测量精度,与传统的通过高速数字计数器测时的方式相比,有很大的优势,可以在较低的频率下完成电路的设计,避免了高频电路设计中所带来的更繁杂的电磁兼容等方面的问题。软件设计是基于嵌入式实时操作系统Small RTOS 430的实现.Small RTOS 430是由IC/OS-I和Small RTOS 51经过改写和移植而来,最大限度的减少了操作系统本身的代码量和所需的内存空间,整个软件系统以任务为单位,任务的实现相互独立,简化了软件的开发过程,缩短了开发周期,增强了系统的可靠性本文设计的时差法超声波流量计,采用了TDC-GPI测量传播时间差,保证了较高的测量精度;使用ispLS1032完成了多脉冲情况下时间差的确定和超声波退耦合脉冲定时器、抗干扰滤波器等硬件抗干扰电路,改善了超声波流量计的测量效果.

    标签: 超声波流量计

    上传时间: 2022-06-21

    上传用户:得之我幸78

  • 超高速FlashADC集成电路设计

    随着半导体技术的发展,模数转换器(Analog to Digital Converter,ADC)作为模拟与数字接口电路的关键模块,对性能的要求越来越高。为了满足这些要求,模数转换器正朝着低功耗、高分辨率和高速度方向快速发展。在磁盘驱动器读取通道、测试设备、纤维光接收器前端和日期通信链路等高性能系统中,高速模数转换器是最重要的结构单元。因此,对模数转换器的性能,尤其是速度的要求与日俱增,甚至是决定系统性能的关键因素。在分析各种结构的高速模数转换器的基础上,本文设计了一个分辨率为6位,采样时钟为1GS/s的超高速模数转换器。本设计采用的是最适合应用于超高速A/D转换器的全并行结构,整个结构是由分压电阻阶梯,电压比较器,数字编码电路三部分组成。在电路设计过程中,主要从以下几个方面进行分析和改进:采用了无采样/保持电路的全并行结构;在预放大电路中,使用交叉耦合对晶体管作为负载来降低输入电容和增加放大电路的带宽,从而提高比较器的比较速度和信噪比;在比较器的输出端采用时钟控制的自偏置差分放大器作为输出缓冲级,使得比较输出结果能快速转换为数字电平,以此来提高ADC的转换速度;在编码电路上,先将比较器输出的温度计码转换成格雷码,再把格雷码转换成二进制码,这样进一步提高ADC的转换速度和减少误码率。

    标签: flash adc

    上传时间: 2022-06-22

    上传用户:kingwide

  • 基于LTspice的反激式变换器设计与仿真

    进年来,脉冲功率装置的使用愈来愈广泛。由于高功率脉冲电变换器源能够为脉冲功率装置的负载提供能量,是构成脉冲功率装置的主体。本文采用LT3751为核心,采用电容、电感储能、并通过电力电子器件配合脉冲变压器设计了反激式功率变换器电路,并通过基于LTspice进行电路瞬态分析,以得到最佳的电路模型。LTspice IV是一款高性能Spice Il仿真器、电路图捕获和波形观测器,并为简化开关稳压器的仿真提供了改进和模型。凌力尔特(LINEAR)对Spice所做的改进使得开关稳压器的仿真速度极快,较之标准的Spice仿真器有了大幅度的提高,并且LTspice IV带有80%的凌力尔特开关稳压器的Spice和Macro Model(宏模型),200多种运算放大器模型以及电阻器、晶体管和MOSFET模型,使得我们在进行电路设计仿真,特别是开关电路的设计与仿真时更加轻松。

    标签: ltspice 反激式变换器

    上传时间: 2022-06-22

    上传用户:hxd

  • 基于CCD和USB的测温摄像机研究与设计

    本文首先对黑体辐射理论和双波段比值测温理论进行研究,探讨在近红外区域对高温炉窑进行比值测温的可行性;针对工业高温炉窑辐射的峰值位置在中红外区域,近红外区域的辐射仍然比较低,且普通CCD在近红外区域响应很低的状况,综合考虑后选择近红外增强型CCD作为探测器;根据所选CCD本文设计了一套完整的双波段测温系统的硬件框架,由Sony公司的近红外增强型黑白CCDICX255AL,10位输出模数转换器AD9991、带有USB接口的可编程增强型8051处理器芯片Cy7c68013和EEPROM存储器等完成功能,并提出双波段测温摄像机的分束和滤光系统的设计方案;由于光学分束镜和滤光片都需要定制镀膜,本文首先设计的硬件系统是单波段系统,本系统的硬件电路有两块线路板:以ICX255ALCCD和AD9991为核心的图像采集板和带USB接口的8051处理器芯片Cy7c68013为核心的控制板,这两块PCB均为2层电路板;还开发了相应的固件程序、设备驱动程序和应用程序,对所设计的各个功能模块分别进行了测试和调试,计算机能通过USB口读取图像并在屏幕上显示,获得了良好的效果;由于本文设计的硬件系统实际上是单波段的,为了验证双波段测温的效果,本文采用ASD FieldSpec HandHeld型光谱仪测量模拟黑体辐射源(工业炉密的炉膛也是个近似黑体辐射源)的辐射,用测得的光谱数据模拟计算,获得了良好的测温效果。

    标签: ccd usb 测温摄像机

    上传时间: 2022-06-22

    上传用户:ooaaooxx

  • ADC的分类比较及性能指标

    1A/D转换器的分类与比较AD转换器(ADC)是模拟系统与数字系统接口的关键部件,长期以米一直被广泛应用于雷达、通信、电子对抗、声纳、卫星、导弹、测控系统、地震、医疗、仪器仪表、图像和音频等领域。随者计算机和通信产业的迅猛发展,进一步推动了ADC在便携式设备上的应用并使其有了长足进步,ADC正逐步向高速、高精度和低功耗的方向发展。通常,AD转换器具有三个基本功能:采样、量化和编码。如何实现这三个功能,决定了AD转换器的电路结构和工作性能。AD转换器的分类很多,按采样频率可划分为奈奎斯特采样ADC和过采样ADC,奈奎斯特采样ADC又可划分为高速ADC、中速ADC和低速ADC:按性能划分为高速ADC和高精度ADC:按结构划分为串行ADC、并行ADC和串并行ADC.在频率范围内还可以按电路结构细分为更多种类。中低速ADC可分为积分型ADC、过采样Sigma-Delta型 ADC、逐次逼近型ADC,Algonithmic ADC:高速ADC可以分为闪电式ADC、两步型ADC、流水线ADC、内插性ADC、折叠型ADC和时间交织型ADC,下面主要介绍几种常用的、应用最广泛的ADC结构,它们是:逐次比较式(SAR)ADC、快闪式(Flash)ADC、折叠插入式(Fol ding&Interpolation)ADC、流水线式(Pipelined)ADC和-A型A/D转换器。

    标签: adc

    上传时间: 2022-06-23

    上传用户:xsr1983

  • 基于FPGA的CCD探测系统

    随着图像采集系统的广泛应用,人们对CCD探测系统的要求日益提高。传统的CCD探测系统由于结构复杂,造价较高,已不能满足日益广泛的应用需要。本文设计了一套基于单片FPGA的小型化与经济化的CCD探测系统,能够满足空间光强的测量并实现光信号的识别和处理。本文研究了CCD探测系统的基本结构。设计了基于单片FPGA的CCD探测系统的硬件电路原理图,完成了硬件电路板制作与调试。系统FPGA选用Altera公司的低成本FPGA芯片EP2C20Q240,电路板采用双层板设计,实现了CCD探测系统的小型化与经济化的目标。利用FPGA器件实现了CCD驱动时序脉冲的设计、实现了单采样与相关双采样的控制程序设计,利用FPGA的数字信号处理功能实现了相关双采样的信号处理。基于FPGA的可编程特性,在不改变外部电路的基础上,通过程序的改变,对CCD驱动频率、模数转换器采样时刻的选择进行方便调节。系统与上位机的数据传输接口采用了网络传输方案,充分发挥了网络传输的远距离传输、远程访问、信息共享等优势,系统采用基于FPGA的Nios IⅡ嵌入式处理器系统,通过对其应用软件的开发,实现了系统与上位机之间数据的可靠性传输。

    标签: fpga ccd

    上传时间: 2022-06-23

    上传用户:xsr1983

  • 基于Matlab的ADC自动测试系统开发

    【摘要】阐述了模数转换器的静态参数和动态参数测试原理和方法,并且构建了模数转换器的自动测试硬件平台和软件系统.重点讨论了利用Matlab库函数进行快速傅立叶变换测试的方法,使用ADC自动测试系统对高速模数转换器SCM530101进行了测试,并给出了测试结果.【关键词】模数转换器;码密度;快速傅立叶变换过去由模拟电路实现的工作,今天越来越多地由数字电路或计算机来处理,特别是近几年来,国内的通讯和多媒体技术迅猛发展,数字产品成为目前以及未来产品的主流.作为模拟与数字之间的桥梁,ADC的应用领域越来越广,特别是在数字信号处理、雷达信号分析、医用成像设备、高速数据采集等应用方面.ADC器件不断向高速、高精度的方向飞速发展,当高精度的ADC应用于通讯、音频或视频领域时,对ADC的性能参数的分析便显得尤为重要.然而,目前的测试方法具有适应性差、只适合分析某种特定的ADC、不能分析多种动态性能参数、使用不方便等缺点

    标签: matlab adc 自动测试系统

    上传时间: 2022-06-24

    上传用户:ooaaooxx

  • [从零开始学数字电子技术].李建清.扫描版

    按照结构清晰、层次分明的原则,本书可分为以下几部分:第一部分为数字电路基础篇。主要包括第一章。重点介绍了数字电路的一些基础知识,如数字电路与模拟电路的比较、数字电路的分类、数制与编码等,它们是分析和理解数字电路的基础。第二部分为逻辑门和组合逻辑电路篇。主要包括第二章、第三章。重点介绍了两个方面的内容:一是基本门电路,如分立元件门电路、集成门电路等,它们是组成组合逻辑电路的基本逻辑单元;二是组合逻辑电路,如编码器、译码器、显示译码器、数据选择器、加法器和数值比较器等,常见的组合电路目前已经制作成集成电路,应用十分广泛。第三部分为双稳态触发器和时序逻辑电路篇。主要包括第四章、第五章。重点介绍了两个方面的内容:一是双稳态触发器电路,如基本RS触发器、同步触发器、主从JK触发器、边沿触发器、T型和T型触发器等;二是时序逻辑电路,简要分析了时序电路的特点及分类,并对几种典型的寄存器和计数器作了介绍。第四部分为脉冲波形的产生与整形电路篇。主要包括第六章。重点讨论了脉冲的产生和整形。在脉冲振荡器中,主要介绍在数字系统中最常使用的多谐振荡器;在整形电路中,主要介绍施密特触发器和单稳态触发器。并对一种在脉冲波形的产生和整形电路中应用十分广泛的多功能集成电路555定时器进行详细分析。第五部分是存储器和微控制器篇。主要包括第七章。重点介绍了只读存储器、随机存储器的结构和原理,并对微处理器的基本结构、工作过程和应用作了简要分析。第六部分为DAC转换器和ADC转换器篇。主要包括第八章。DAC转换器和ADC转换器,也就是通常所说的数/模转换和模/数转换电路,它们是数字系统不可缺少的组成部分,如用微控制器对生产过程进行控制,就必须首先将被控制的模拟量转换为数字量,才能送到微控制器系统中去进行运算和处理,然后又需将运算得到的数字量转换为模拟量,才能实现对被控参数的控制。

    标签: 数字电子技术

    上传时间: 2022-06-24

    上传用户:jiabin

  • 基于LTspice的射极跟随器仿真实验

    基于LTspice的射极跟随器仿真实验1,实验要求与目的(1)进一步掌握静态工作点的调试方法,深入理解静态工作点的作用。(2)调节电路的跟随范围,使输出信号的跟随范围最大。(3)测量电路的电压放大倍数、输入电阻和输出电阻。(4)测量电路的频率特性。2·实验原理在射极跟随器电路中,信号由基极和地之间输入,由发射极和地之间输出,集电极交流等效接地,所以,集电极是输入/输出信号的公共端,故称为共集电极电路。又由于该电路的输出电压是跟随输入电压变化的,所以又称为射极跟随器。3.实验电路射极跟随器电路如图 1所示。4.实验步骤(1)静态工作点的调整。按图 1连接电路,输入信号由信号发生器产生一个幅度为 1V、频率为1kHz的正弦信号。要注意使信号不失真输出。(2)跟随范围调节。增大输入信号直到输出出现失真,观察出现了饱和失真还是截止失真,再增大或减小信号,使失真消除。再次增大输入信号,若出现失真,再调节信号使输出波形达到最大不失真输出,此时电路的静态工作点是最佳工作点,输入信号是最大的跟随范围。最后输入信号增加到28 v,电路达到最大不失真输出如图 2所示。最大输入、输出信号波形如图 3所示。

    标签: ltspice 射极跟随器

    上传时间: 2022-06-26

    上传用户:ddk