虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

车牌识别控制板

  • PLC及PC与RFID射频识别读写器串行通讯的实现

    本文以EMS(Escort Memory Systems)的RFID 射频识别读写器LRP830 为例,分别介绍了可编程控制器及微机与RFID 射频识别读写器进行串行通讯,从而读取标识数据的具

    标签: RFID PLC 射频识别 串行通讯

    上传时间: 2013-06-12

    上传用户:fyerd

  • 基于DSP和ARM的虹膜识别系统设计及实现

    生物识别技术是根据人体自身所固有的生理特征或行为特征来进行身份识别。与传统识别方法相比,生物特征的身份识别技术不存在携带不便、丢失、遗忘等问题。虹膜识别以其精确度高、稳定性好、高独特性、非接触等特点作为一种新兴的生物识别技术使它受到国内外研究人员的重视。 近年虹膜识别理论的发展十分迅速,到目前为止已经有虹膜识别系统投入了商业应用,但大多数此类系统都需要PC作为运行平台而缺乏灵活性。但是嵌入式应用是虹膜识别技术走向实际应用的必然趋势。因此本文提出了一个利用DSP+ARM实现虹膜识别嵌入式应用的一个方案。本系统由6个模块组成:电源管理和监控、虹膜图像采集、虹膜图像处理(DSP)、存储器(SDRAM和FLASH)、人机交互(ARM)以及数据传输部分。 在硬件设计方面介绍了DSP的有关知识和DSP系统硬件设计的过程,讲解了DSP系统各硬件模块的设计与调试。在软件设计方面介绍了利用CCS开发的设计流程和调试经验并且对于如何固化代码使系统硬件自举进行详细阐述,另外还介绍了如何基于WINCE利用ARM系统进行人机界面快速开发。 最后,文章对未来工作方向进行了简要的说明。

    标签: DSP ARM 虹膜识别 系统设计

    上传时间: 2013-04-24

    上传用户:hwl453472107

  • 数字识别系统源代码

    数字识别系统源代码 使用说明 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别) 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90%。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。 具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-“去噪”-“倾斜校正”-“分割”-“标准化尺寸”-“紧缩重排”。 注意,待识别的图片要与win.dat和whi.dat位于同一目录,这两文件保存训练后网络的权值参数。

    标签: 数字识别 源代码

    上传时间: 2013-06-25

    上传用户:wzr0701

  • 基于ARM处理器S3C44B0的自动指纹识别系统研究

    指纹识别是在指纹图像上找到指纹的特征,通过计算机模糊比较的方法,把两个指纹的特征模板进行比较,计算出它们的相似程度,最终得到两个指纹的匹配结果。本文对现已存在的多种指纹识别算法进行编程比较,并对细化算法提出改进。同时采用基于ARM7TDMI内核的32位处理器S3C44B0作为主控制器,半导体电容传感器FPS200作为指纹数据采集设备,构建了自动指纹识别系统。论文完成主要工作如下: 1、指纹采集模块的设计:根据FPS200的相关寄存器资源和管脚特性,完成指纹传感器FPS200的电路设计;研究FPS200主要寄存器的功能和图像采集方式,给出FPS200在三种工作方式下的工作流程,并且对三种工作模式进行分析。 2、指纹识别算法研究:通过对现已存在的多种图像预处理算法进行编程实现和对比研究发现,细化后的图像多存在短线、断线、毛刺等干扰以及细化不彻底的现象,为此提出了新的修复算法:分析目标点周围纹线的走向趋势,选择去除或者保留周围的相连点,较好地解决了细化不彻底的问题;再对细化后的图像采用方形模板进行纹线跟踪,去除伪特征点,克服了逐步递进的纹线跟踪算法过于复杂、不易实现等问题。 3、采用Sansung公司基于ARM7TDMI内核的32位RISC处理器S3C44B0,构建了自动指纹识别系统。该系统主要包括电源管理部分、指纹图像采集模块、存储器模块、JTAG调试接口以及与外设连接的串行接口。硬件部分主要完成指纹采集模块接口的设计与开发,软件部分主要完成指纹图像采集程序、指纹识别算法程序和串口通信程序的开发,此外还通过串口实现指纹数据上传到上位机,在VB环境下实现了简易的人机交互软件,提供指纹图像的直观显示,用于对指纹识别程序进行测试,并对测试结果进行了分析。

    标签: S3C44B0 ARM 处理器 自动

    上传时间: 2013-05-22

    上传用户:Andy123456

  • 基于ARM的915MHz射频识别读卡器研究

    射频识别(RFID,Radio Frequency Identification)是一种利用电磁波双向传输实现自动识别的技术。近年来,射频识别技术在物流、交通、身份识别等生产生活领域的应用日益扩大。相比于13.56MHz射频识别系统,915MHz射频识别系统在识别距离,阅读速度方面有更大的优势,是目前射频识别产品研究的热点。 本文在理解ISO/IEC18000-6C协议的基础上,首先研究用于本系统的基本理论,包括射频识别技术和嵌入式技术,提出一款基于ISO/IEC18000-6C协议的915MHz射频识别读卡器的解决方案。在硬件部分,以Intel公司开发的R1000作为射频收发模块的核心;选用ATMEL公司的ARM处理器AT91SAM7S256作为控制单元的主控制器,在ARM处理器上运行μC/OS-II嵌入式实时操作系统,采用多任务实现和其他功能模块的通信。软件部分为系统移植了μC/OS-II操作系统,使用C与汇编语言的混合编程编写Bootloader,编写了各种硬件设备的驱动程序,使用C语言实现了串行通信程序,实现与上位机通信并实现对程序的更新。本文所设计的射频识别系统具有模块化设计、高可靠性等特点。实验表明,这种设计方案能够达到ISO/IEC18000-6C协议要求。

    标签: ARM 915 MHz 射频识别

    上传时间: 2013-07-18

    上传用户:zklh8989

  • 基于ARM的PDF417二维条码识别

    条码技术是随通信技术,计算机技术的发展应运而生的自动识别技术的一种。根据二进制编码规则对应形成的由对光反映率不同的条、空组成的图形,经光电扫描识读器扫描,将采集的信息经处理器进行处理,从而达到自动识别的目的。条码技术自出现以来,得到了人们的普遍关注,发展十分迅速,已广泛用于交通运输、商业、医疗卫生、制造业、仓储业、邮电业等领域,极大的提高了数据采集和信息处理的速度,提高了工作效率,并为管理的科学化、信息化和现代化作出了贡献。目前常用的是一维条码,但一维条码最大的弱点就是表征的信息量是有限的,需要依赖外部数据库支持,离开这个数据库条码本身就没有意义了。二维条码克服了这一弱点,它是在一维条码基础上形成的高密度、高信息量的条码,可以将大量信息在小区域内编码,它本身就是一个完整的数据文件,是实现证件、卡片等信息存储、携带并可以通过机器自动识读的理想方法。 本课题采用流行的嵌入式技术,采用S3C44BOX作为二维条码PDF417识别器的数据采集终端,该终端内嵌μC/OS-Ⅱ操作系统,将应用分解成多任务,简化了应用系统软件设计;使控制系统的实时性得到了保证,提高了系统的可靠性和稳定性;同时也增强了系统的可扩展性和产品开发的可延续性。 本课题的主要任务是PDF417(Portable Data File)二维条码图像的识别。先由扫描仪或照相机获取二维条码的原始图像,再由PC(Personal Computer)计算机中的图象处理程序对图象数据进行处理,然后在条码中定位单个码字符号的图像,利用算法识别出单个码字符号。本文在条码图像的预处理方面进行了算法改进,取得了较好的成果,能够有效的去掉干扰噪声和图像定位。通过实验结果表明:本课题研究的二维条码识别系统是比较令人满意的。

    标签: ARM 417 二维条码

    上传时间: 2013-08-01

    上传用户:caiiicc

  • 基于ARM的嵌入式语音识别系统研究

    语音识别是通过识别和理解过程把人类的语音信号转变为文本或命令的技术。近年来语音识别技术由于其重要性和研究难度成为研究的热点。随着嵌入式的发展,嵌入式语音识别技术成为语音识别领域发展的新的重要方向。 在此背景下,本课题进行基于ARM的嵌入式语音识别系统的研究。论文分别从理论分析、系统硬件平台的总体设计、系统软件的分析定制等方面,对语音识别在ARM上的应用做了研究。 1、在理论上,详细介绍了语音识别的发展历史与研究现状;具体阐述语音识别技术的基本原理和主要研究方法,并推导了语音识别技术中最常用到的两种算法DTW和HMM的数学模型,为进一步的语音识别研究打下基础。 2、在硬件平台方面,本文分析设计了语音识别系统的总体方案,主要包括以下三部分:语音识别系统的控制部分、语音的输入输出部分以及语音程序的存储部分;文中详细介绍了各部分的作用以及它们之间的连接方式,此外根据实际需要,选择确定了语音芯片等外围电路芯片的型号并扩展了外围电路。 3、在系统软件选择定制方面,不仅要求各部分自身功能完善,能够满足本课题的需求,而且要求各部分相互之间满足一定的兼容性,即定制的系统具有稳定性,可以有效的工作。考虑到以上的因素,本课题针对特定的语音识别系统的需求,对交叉编译环境、U-boot、内核、根文件系统等均进行了量身定制。最终选用Crosstool来制作专门编译Linux-2.6.22.6的交叉编译工具;选用比较稳定的支持tftp下载的u-boot-1.2.0作为引导程序;选用Linux-2.6.22.6作为嵌入式操作系统内核,并对其进行剪裁定制,特别是增加了UDA1341TS音频驱动和网卡驱动部分;选用了带有mdev功能的busybox-1.9.1来制作根文件系统。 在以上三方面的基础上,本课题对语音识别程序系统进行了实验研究。实验包括音频驱动、语音录制、语音训练、语音识别程序的编译以及语音识别等程序在ARM上的移植。 最后,本论文采用DTW模型,完成了语音模板的训练和语音识别的任务。经过实验测试,该系统有效完成了预期的语音识别任务。

    标签: ARM 嵌入式 语音识别 系统研究

    上传时间: 2013-05-30

    上传用户:wsx123

  • 基于ARM的掌形识别门禁系统研究与设计

    自“9.11”后,随着人们对安防需求的升级,门禁控制系统得到日益广泛的应用,不断提高门禁系统的安全性成为研究的重要课题。第四代门禁系统结合了人体生物特征识别技术,利用人体本身具有的物理特征(如指纹、虹膜、脸型、掌纹等)或行为特征(如步态、签名等)来确定人的身份,取代或加强传统的身份识别方法。 论文采用掌形识别为控制方案,基于ARM920T内核的EP9315芯片为门禁系统CPU,设计和调试了系统的硬件平台。 论文研究了掌形识别算法,进行了三方面的工作。 首先研究了掌形中的手形特征,提出了一种基于骨架特征的手形识别算法,很好的克服了手指旋转给识别带来的干扰。 然后研究了掌形中的掌纹特征,通过系列图像处理,分离出手掌的三条主线,提取主线端点,并在主线上等间隔采样,利用端点和采样点进行匹配,拥有很高的识别率。 最后结合手形与掌纹特征,实现掌形识别。依据手形特征对掌形库进行粗分类,利用掌纹特征进行匹配,算法拥有很快的识别速度与稳定较高的识别率。对分类规则提出了新思路与方法。 论文还提出了基于ARM的门禁系统方案。成功设计了以基于ARM920T内核的EP9315芯片为CPU的最小系统,设计PCB图并制板,最后调试了系统的底层电路。 论文的研究设计工作,通过提高掌形识别算法的识别率,达到了提高门禁系统安全性的目的;ARM平台的设计与调试,在工程实际中有参考价值。

    标签: ARM 识别 系统研究 门禁

    上传时间: 2013-04-24

    上传用户:zsjzc

  • 基于MF RC500的射频识别读写器设计

    主要介绍一种基于Philips 公司的MF RC500 的射频识别读写器的设计:首先介绍系统的组成以及MF RC500的特性,接着给出天线的设计规范,最后给出MCU 89C52与MF RC500的接口

    标签: 500 RC 射频识别 读写器

    上传时间: 2013-05-20

    上传用户:hzy5825468

  • 基于ARM和uClinux的纸币识别系统实时性改进

    现阶段,中国的自动售货行业蓬勃发展。作为自动服务的核心部件,基于单片机的纸币识别系统已经越来越不能满足市场需求。 本文对基于uClinux操作系统和S3C4510B的纸币识别系统的各个方面进行了研究。研究表明,纸币识别系统要求能满足硬实时性,但uClinux操作系统的实时性不强。由于uClinux功能强大,免费且资源丰富,如能成功改进本纸币识别系统的实时性,纸币识别系统将在成本,性能和功能性等方面有更大的优势,所以对实时性进行改进将非常有意义。 在本纸币识别系统中,纸币特征采集子系统对实时性要求很高,需要满足硬实时的要求,所以是否能满足该子系统的实时性的要求,将是本纸币识别系统能否很好工作的关键所在。通过对当前多种uClinux实时性改进方案进行了解和研究,参考了RTAI和RTLinux的工作原理,提出了基于uClinux操作系统和S3C4510B的纸币识别系统的实时性改进方案。纸币特征采集子系统主要依靠码盘光耦产生的反馈信号生成硬件中断,然后通过处理该中断,实现对纸币特征的采集。在本文提出的方案中,为了提高系统对硬件中断的反应速度,避开uClinux对中断的慢处理,在操作系统与硬件之间建立了一个特殊的硬件抽象层来管理中断,并将纸币特征采集功能与操作系统剥离,放入一个单独的处理单元。通过这样的处理,使得中断产生时,硬件抽象层暂停uClinux操作系统的运行,直接将中断交由纸币特征采集处理单元处理,实时的完成纸币特征数据的采集。

    标签: uClinux ARM 识别系统 实时性

    上传时间: 2013-05-24

    上传用户:shenlan