虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

谐振半桥

  • P82B96在远距离I2C通信中的应用

    该器件可桥接SMBus(350μA)、3.3V逻辑器件,15V电平及低阻抗导线可以延长通信距离,增加抗干扰能力。该器件对I2C总线协议和时钟速率没有特殊要求。P82B96能增加I2C总线节点上挂接的最小负载数、新总线负载数和远程I2C总线器件数,且不会对本地节点造成影响。挂接器件数目和物理上的限制也会大大减小。通过平衡传输线(双绞线)或光耦隔离(光纤)发送信号,Tx、Rx结构上的分隔使其发送变得简单,且Tx和Rx信号直接相连时而不会锁死。

    标签: P82B96 I2C 通信 中的应用

    上传时间: 2013-10-27

    上传用户:sxdtlqqjl

  • SDRAM的原理和时序

    SDRAM的原理和时序 SDRAM内存模组与基本结构 我们平时看到的SDRAM都是以模组形式出现,为什么要做成这种形式呢?这首先要接触到两个概念:物理Bank与芯片位宽。1、 物理Bank 传统内存系统为了保证CPU的正常工作,必须一次传输完CPU在一个传输周期内所需要的数据。而CPU在一个传输周期能接受的数 据容量就是CPU数据总线的位宽,单位是bit(位)。当时控制内存与CPU之间数据交换的北桥芯片也因此将内存总线的数据位宽 等同于CPU数据总线的位宽,而这个位宽就称之为物理Bank(Physical Bank,下文简称P-Bank)的位宽。所以,那时的内存必须要组织成P-Bank来与CPU打交道。资格稍老的玩家应该还记 得Pentium刚上市时,需要两条72pin的SIMM才能启动,因为一条72pin -SIMM只能提供32bit的位宽,不能满足Pentium的64bit数据总线的需要。直到168pin-SDRAM DIMM上市后,才可以使用一条内存开机。不过要强调一点,P-Bank是SDRAM及以前传统内存家族的特有概念,RDRAM中将以通道(Channel)取代,而对 于像Intel E7500那样的并发式多通道DDR系统,传统的P-Bank概念也不适用。2、 芯片位宽 上文已经讲到SDRAM内存系统必须要组成一个P-Bank的位宽,才能使CPU正常工作,那么这个P-Bank位宽怎么得到呢 ?这就涉及到了内存芯片的结构。 每个内存芯片也有自己的位宽,即每个传输周期能提供的数据量。理论上,完全可以做出一个位宽为64bit的芯片来满足P-Ban k的需要,但这对技术的要求很高,在成本和实用性方面也都处于劣势。所以芯片的位宽一般都较小。台式机市场所用的SDRAM芯片 位宽最高也就是16bit,常见的则是8bit。这样,为了组成P-Bank所需的位宽,就需要多颗芯片并联工作。对于16bi t芯片,需要4颗(4×16bit=64bit)。对于8bit芯片,则就需要8颗了。以上就是芯片位宽、芯片数量与P-Bank的关系。P-Bank其实就是一组内存芯片的集合,这个集合的容量不限,但这个集合的 总位宽必须与CPU数据位宽相符。随着计算机应用的发展,

    标签: SDRAM 时序

    上传时间: 2013-11-04

    上传用户:zhuimenghuadie

  • 关于PCB封装的资料收集整理.pdf

    关于PCB封装的资料收集整理. 大的来说,元件有插装和贴装.零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。是纯粹的空间概念.因此不同的元件可共用同一零件封装,同种元件也可有不同的零件封装。像电阻,有传统的针插式,这种元件体积较大,电路板必须钻孔才能安置元件,完成钻孔后,插入元件,再过锡炉或喷锡(也可手焊),成本较高,较新的设计都是采用体积小的表面贴片式元件(SMD)这种元件不必钻孔,用钢膜将半熔状锡膏倒入电路板,再把SMD 元件放上,即可焊接在电路板上了。晶体管是我们常用的的元件之一,在DEVICE。LIB库中,简简单单的只有NPN与PNP之分,但实际上,如果它是NPN的2N3055那它有可能是铁壳子的TO—3,如果它是NPN的2N3054,则有可能是铁壳的TO-66或TO-5,而学用的CS9013,有TO-92A,TO-92B,还有TO-5,TO-46,TO-52等等,千变万化。还有一个就是电阻,在DEVICE 库中,它也是简单地把它们称为RES1 和RES2,不管它是100Ω 还是470KΩ都一样,对电路板而言,它与欧姆数根本不相关,完全是按该电阻的功率数来决定的我们选用的1/4W 和甚至1/2W 的电阻,都可以用AXIAL0.3 元件封装,而功率数大一点的话,可用AXIAL0.4,AXIAL0.5等等。现将常用的元件封装整理如下:电阻类及无极性双端元件:AXIAL0.3-AXIAL1.0无极性电容:RAD0.1-RAD0.4有极性电容:RB.2/.4-RB.5/1.0二极管:DIODE0.4及DIODE0.7石英晶体振荡器:XTAL1晶体管、FET、UJT:TO-xxx(TO-3,TO-5)可变电阻(POT1、POT2):VR1-VR5这些常用的元件封装,大家最好能把它背下来,这些元件封装,大家可以把它拆分成两部分来记如电阻AXIAL0.3 可拆成AXIAL 和0.3,AXIAL 翻译成中文就是轴状的,0.3 则是该电阻在印刷电路板上的焊盘间的距离也就是300mil(因为在电机领域里,是以英制单位为主的。同样的,对于无极性的电容,RAD0.1-RAD0.4也是一样;对有极性的电容如电解电容,其封装为RB.2/.4,RB.3/.6 等,其中“.2”为焊盘间距,“.4”为电容圆筒的外径。对于晶体管,那就直接看它的外形及功率,大功率的晶体管,就用TO—3,中功率的晶体管,如果是扁平的,就用TO-220,如果是金属壳的,就用TO-66,小功率的晶体管,就用TO-5,TO-46,TO-92A等都可以,反正它的管脚也长,弯一下也可以。对于常用的集成IC电路,有DIPxx,就是双列直插的元件封装,DIP8就是双排,每排有4个引脚,两排间距离是300mil,焊盘间的距离是100mil。SIPxx 就是单排的封装。等等。值得我们注意的是晶体管与可变电阻,它们的包装才是最令人头痛的,同样的包装,其管脚可不一定一样。例如,对于TO-92B之类的包装,通常是1 脚为E(发射极),而2 脚有可能是B 极(基极),也可能是C(集电极);同样的,3脚有可能是C,也有可能是B,具体是那个,只有拿到了元件才能确定。因此,电路软件不敢硬性定义焊盘名称(管脚名称),同样的,场效应管,MOS 管也可以用跟晶体管一样的封装,它可以通用于三个引脚的元件。Q1-B,在PCB 里,加载这种网络表的时候,就会找不到节点(对不上)。在可变电阻

    标签: PCB 封装

    上传时间: 2013-11-03

    上传用户:daguogai

  • ARM处理器的工作模式

    ARM处理器的工作模式 ARM处理器状态    ARM微处理器的工作状态一般有两种,并可在两种状态之间切换:第一种为ARM状态,此时处理器执行32位的字对齐的ARM指令;第二种为Thumb状态,此时处理器执行16位的、半字对齐的Thumb指令。在程序的执行过程中,微处理器可以随时在两种工作状态之间切换,并且,处理器工作状态的转变并不影响处理器的工作模式和相应寄存器中的内容。但ARM微处理器在开始执行代码时,应该处于ARM状态。  ARM处理器状态    进入Thumb状态:当操作数寄存器的状态位(位0)为1时,可以采用执行BX指令的方法,使微处理器从ARM状态切换到Thumb状态。此外,当处理器处于Thumb状态时发生异常(如IRQ、FIQ、Undef、Abort、SWI等),则异常处理返回时,自动切换到Thumb状态。    进入ARM状态:当操作数寄存器的状态位为0时,执行BX指令时可以使微处理器从Thumb状态切换到ARM状态。此外,在处理器进行异常处理时,把PC指针放入异常模式链接寄存器中,并从异常向量地址开始执行程序,也可以使处理器切换到ARM状态。ARM处理器模式    ARM微处理器支持7种运行模式,分别为:用户模式(usr):ARM处理器正常的程序执行状态。快速中断模式(fiq):用于高速数据传输或通道处理。外部中断模式(irq):用于通用的中断处理。管理模式(svc):操作系统使用的保护模式。数据访问终止模式(abt):当数据或指令预取终止时进入该模式,可用于虚拟存储及存储保护。系统模式(sys):运行具有特权的操作系统任务。定义指令中止模式(und):当未定义的指令执行时进入该模式,可用于支持硬件协处理器的软件仿真。ARM处理器模式    ARM微处理器的运行模式可以通过软件改变,也可以通过外部中断或异常处理改变。大多数的应用程序运行在用户模式下,当处理器运行在用户模式下时,某些被保护的系统资源是不能被访问的。    除用户模式以外,其余的所有6种模式称之为非用户模式,或特权模式;其中除去用户模式和系统模式以外的5种又称为异常模式,常用于处理中断或异常,以及需要访问受保护的系统资源等情况。ARM寄存器    ARM处理器共有37个寄存器。其中包括:31个通用寄存器,包括程序计数器(PC)在内。这些寄存器都是32位寄存器。以及6个32位状态寄存器。 关于寄存器这里就不详细介绍了,有兴趣的人可以上网找找,很多这方面的资料。异常处理    当正常的程序执行流程发生暂时的停止时,称之为异常,例如处理一个外部的中断请求。在处理异常之前,当前处理器的状态必须保留,这样当异常处理完成之后,当前程序可以继续执行。处理器允许多个异常同时发生,它们将会按固定的优先级进行处理。当一个异常出现以后,ARM微处理器会执行以下几步操作:进入异常处理的基本步骤:将下一条指令的地址存入相应连接寄存器LR,以便程序在处理异常返回时能从正确的位置重新开始执行。将CPSR复制到相应的SPSR中。根据异常类型,强制设置CPSR的运行模式位。强制PC从相关的异常向量地址取下一条指令执行,从而跳转到相应的异常处理程序处。如果异常发生时,处理器处于Thumb状态,则当异常向量地址加载入PC时,处理器自动切换到ARM状态。 ARM微处理器对异常的响应过程用伪码可以描述为: R14_ = Return LinkSPSR_= CPSRCPSR[4:0] = Exception Mode NumberCPSR[5] = 0 ;当运行于 ARM 工作状态时If == Reset or FIQ then;当响应 FIQ 异常时,禁止新的 FIQ 异常CPSR[6] = 1PSR[7] = 1PC = Exception Vector Address异常处理完毕之后,ARM微处理器会执行以下几步操作从异常返回:将连接寄存器LR的值减去相应的偏移量后送到PC中。将SPSR复制回CPSR中。若在进入异常处理时设置了中断禁止位,要在此清除。

    标签: ARM 处理器 工作模式

    上传时间: 2013-11-15

    上传用户:hanbeidang

  • Atmel 20LIN系统基础芯片技术手册

    Atmel 20LIN系统基础芯片技术手册:做为低成本汽车系统,LIN 总线已在汽车工业中建立起了它的地位。当前一些OEM 商正计划大量带有一个主LIN 节点和几个LIN 从节点的应用方案,例如车镜控制、座位调节、空调或仪表电子等。一般说来,所有这些应用包括的内容除LIN 收发器外,还包括诸如微控制器、调压器和看门狗这些基本功能器件。在多种不同的应用方案中对这个基本功能器件的要求是极其相似的。另一方面,对于象开关或桥式驱动器这类致动器的需求则大大依赖于采用它们的应用方案。这种情况对于传感器接口也是正确的

    标签: Atmel LIN 20

    上传时间: 2013-10-13

    上传用户:zhengjian

  • 串口调试助手用户手册

    TKS_COM串口调试助手在具备一般串口调试助手功能的同时增加了对多串口的实时监控、桥接、多播和数据过滤等功能。

    标签: 串口 调试助手 用户手册

    上传时间: 2013-12-01

    上传用户:sdfsdfs1

  • PCI控制器解决方案

    关键词 PCI的总线协议,数据传输摘 要本文档介绍通过 Actel Flash 的FPGA 来实现PCI 的桥接芯片的功能

    标签: PCI 控制器 方案

    上传时间: 2013-10-08

    上传用户:kongrong

  • 手持式设备解决方案

    关键词 手持设备,低功耗,桥接器件摘 要本文档介绍采用 Actel 低功耗的IGLOO 系列作为处理器的桥接器件和设备控制器.

    标签: 手持式设备 方案

    上传时间: 2014-01-20

    上传用户:wkxiian

  • 基于单片机PWM控制逆变电源的设计

    基于单片机PWM控制逆变电源的设计:设计了一种基于AT89C51 控制SA4828 的逆变电源,它采用IGBT 作为功率器件, IR2110 作为IGBT 的驱动芯片,并采用恒 U/F 的控制策略。关键词:单片机 脉宽调制 逆变电源 本论文主要目的是设计一种全数字化三相PWM 逆变电源。三相SPWM 发生器是逆变电源的核心部分,它的性能好坏,直接关系到整个逆变电源的工作状况。鉴于以80C196MC或TMS320LF240 为核心组成的控制电路,能实现电源的全数字化控制,但系统较复杂,软件工作量大,研制周期长。在本设计中,我们选用了AT89C51 控制MITEL 公司的SA4828芯片作为波形发生器。 二、系统结构功率流程:市电输入经输入保护电路滤除噪声后,进行整流、滤波变成直流电压,然后这个直流电压输入到桥式逆变电路。PWM 发生器在单片机的控制下,通过驱动电路对输出脉冲进行调制就可改变输出电压和频率,再经输出变压器隔离后供给负载。主电路中根据磁路集成原理,将变压器和滤波电感集成为一个磁性元件,再在变压器的次级并以适当的电容,组成滤波网络以获得正弦波形输出。整个电路分为五大部分:整流滤波、全桥逆变电路、驱动电路以及将单片机控制PWM 产生器的控制电路和保护电路。另外在输入和输出端还有输入滤波和输出滤波电路。

    标签: PWM 单片机 控制 逆变电源

    上传时间: 2013-11-07

    上传用户:xyipie

  • 单片机指令周期

    单片机指令周期:时序是用定时单位来描述的,MCS-51的时序单位有四个,它们分别是节拍、状态、机器周期和指令周期,接下来我们分别加以说明。节拍与状态:我们把振荡脉冲的周期定义为节拍(为方便描述,用P表示),振荡脉冲经过二分频后即得到整个单片机工作系统的时钟信号,把时钟信号的周期定义为状态(用S表示),这样一个状态就有两个节拍,前半周期相应的节拍我们定义为1(P1),后半周期对应的节拍定义为2(P2)。机器周期:MCS-51 有固定的机器周期,规定一个机器周期有6 个状态,分别表示为S1-S6,而一个状态包含两个节拍,那么一个机器周期就有12个节拍,我们可以记着S1P1、S1P2……S6P1、S6P2,一个机器周期共包含12个振荡脉冲,即机器周期就是振荡脉冲的12 分频,显然,如果使用6MHz的时钟频率,一个机器周期就是2us,而如使用12MHz的时钟频率,一个机器周期就是1us。指令周期:执行一条指令所需要的时间称为指令周期,MCS-51的指令有单字节、双字节和三字节的,所以它们的指令周期不尽相同,也就是说它们所需的机器周期不相同,可能包括一到四个不等的机器周期(这些内容,我们将在下面的章节中加以说明)。

    标签: 单片机 指令周期

    上传时间: 2013-10-15

    上传用户:qq10538412