随着计算机技术的迅猛发展,受其影响的仪器行业也发生了巨大的变革,即仪器的手动操作使用改为计算机控制自动测试。随着自动测试技术和程控仪器的发展,除了要求物理硬件接口标准化外,也要求软件控制标准化。 硬件方面,从20世纪50代自动测试概念建立起,经过初期专用接口、半专用接口到20世纪80年代中期才普及推广开放式标准接口总线,如RS232串行通信接口总线、GPIB通用接口总线、PXI计算机外围仪器系统总线、VXI块式仪器系统总线等。 软件方面,1987年6月颁布的IEEE488.2(程控仪器消息交换协议)标准首先解决了数据结构方面的问题,但仍将大量的器件语义留给设计者自由定义。1990年4月,国际上九家仪器公司在IEEE488.2基础上提出了SCPI(Standard Commands for Programmable Instruments程控仪器标准命令),才使程控仪器器件数据和命令得到标准化。SCPI的总目标是缩短自动测试系统程序开发时间,保护仪器制造者和使用者双方的硬、软件投资,为仪器控制和数据利用提供广泛兼容的编码环境。 仪器接收到SCPI消息后进行响应:接收字符串消息、词法分析、语法分析、中间代码生成、优化和目标代码生成,语法分析模块的性能直接影响到程控执行效率。为了进一步简化仪器内语法分析模块、提高程控执行效率,本课题提出了在接口电路中加入解析模块的思想,可将控制器发送到仪器的SCPI消息即复杂的ASCII码字符串转变为简单的二进制代码。采用此解析模块将大大简化仪器设计者的软件工作,既能实现仪器语言标准化又能提高仪器对远程 控制的响应速度,这在研究实验室内的自制仪器时将是很有用的。 仪器接口有很多种,本课题主要讨论了RS232和GPIB两种接口。本设计中仪器接口板是独立于仪器的,与仪器单独使用微处理器,若要与仪器连接实现通信只需在两微处理器之间进行通信即可,这样做的目的是:一方面可以不影响仪器的设计和操作,一方面可以实现接口板的通用性和仪器的可换性。针对于RS232接口为一简单接口,我先将工作重心放在软件设计上,主要考虑怎样把复杂的ASCII码字符串解析为简单的二进制代码。针对于GPIB接口,软件设计的主要部分已完成,再把工作重心放在硬件设计上,采用性价比更高的CPID实现GPIB接口芯片NAT9914。为了观察解析结果还加入了LCD显示。本设计在开发通用的、低价的仪器接口板方面做了一个有益的尝试,为进一步的自动测试系统研究打下了基础。 关键词:仪器;SCPI;RS232接口;GPIB接口;CPLD
上传时间: 2013-04-24
上传用户:Andy123456
直接转矩控制技术是继矢量控制技术之后交流调速领域中新兴的控制技术,它采用空间矢量的分析方法,在定子坐标系下计算并控制转矩和磁链,以获得转矩的高动态性能。比较于矢量控制,它省去了复杂的矢量变换,克服了对电机转子参数的依赖性,具有转矩响应快的优点。然而,异步电动机的直接转矩控制系统存在转矩、电流和磁链脉动较大,开关频率不恒定的问题。本文在传统直接转矩控制的基础上,针对其存在的缺点提出了基于空间矢量脉宽调制的直接转矩控制策略。 这种新型的直接转矩控制策略使空间矢量脉宽调制技术和直接转矩控制技术相结合。把电动机和PWM逆变器看成一体,使电动机获得赋值恒定的近似理想的圆形磁场,解决其转矩、电流、磁链脉动大,开关频率不恒定的问题。在论文撰写的过程中做了如下工作: 根据电机原理和坐标变换理论,建立定子正交α—β两相静止坐标系下的异步电动机的数学模型,包括电机的磁链模型、转矩模型和运动方程。 设计PI控制器,该控制器把转矩和磁链误差信号转换成参考电压,然后通过坐标变换把参考电压变换成SVPWM模块所需的指令电压,对SVPWM模块进行控制。 设计SVPWM控制模块,其中设计了期望电压空间矢量的合成方法,矢量区段的判断,计算了开关器件的导通时间和时刻。 通过理论分析和设计各个模块,组成了控制系统逆变器部分的仿真模型。在MATLAB/SIMULINK仿真工具箱中搭建仿真模型,通过设置合理的仿真参数、电机参数、给定量参数以及PI控制器的控制参数对系统进行仿真研究,从而在理论上验证系统设计的正确性。 仿真实验结果证明了这种基于空间矢量脉宽调制的直接转矩控制方法可以有效改善直接转矩控制系统的性能。减小传统直接转矩控制中的磁链和转矩脉动,并使逆变器工作在恒定的开关频率。最后总结论文所做的研究工作,并展望了今后的研究重点和方向。
上传时间: 2013-04-24
上传用户:dancnc
随着功率开关器件的进步,大量的电力电子变流装置在国民经济各领域获得了广泛应用,但是这些变流装置大部分都需要整流环节。传统的不控整流或相控整流存在网侧功率因数低、电流畸变严重等缺点。PWM整流器可实现正弦的网侧电流、单位或可调的功率因数、能量的双向流动,是一种真正意义上的“绿色环保”电力电子装置。PWM整流器可分为电压型PWM整流器(Voltage—SourceRectifier,VSR)和电流型PWM整流器(Current—SourceRectifier,CSR)。CSR具有直接控制输出电流、动态响应快、限流能力强等特点,在一些中、大功率应用场合,较之VSR,在经济和技术上更具优势。 本文针对电网电压平衡、不平衡情况、多模块直接并联几个方面,对三相CSR及其控制策略展开了深入研究,论文的主要工作和取得的创新性成果如下: 1、在电网电压平衡情况下,提出了三相CSR的直流电流非线性解耦控制策略和交流电流非线性解耦控制策略,实现了有功功率和无功功率的独立、解耦控制,获得了线性的动态响应。直流电流非线性解耦控制策略是直流电流控制和网侧无功电流控制并行的控制策略,具有较快的直流电流响应速度;交流电流非线性解耦控制策略是直流电流(或电压)控制和网侧电流控制级联的控制策略,具有结构简单,便于独立设计直流和交流控制器的特点。 2、考虑了电网电压不平衡和滤波器参数三相不对称的情况,提出了基于瞬时有功功率调节的三相CSR的不平衡补偿策略,消除了直流电流脉动分量,实现了网侧可控的功率因数和正弦的交流电流;提出了基于滑模控制的交流电流控制策略,简化了控制器结构,实现了对网侧电流的无差跟踪。 3、建立了多模块直接并联CSR的环流模型;对任一并联模块,提出了总直流电流控制器外加2个均流控制器的直流侧控制器结构,保证了流过各模块上、下桥臂的电流均相等,并且各模块仅共享总直流电流控制器输出信号,最大可能地保证了各模块控制的独立性。 4、建立了三相CSR实验系统,进行了初步的实验研究。
上传时间: 2013-04-24
上传用户:极客
轻型高压直流输电系统在解决交流系统非同步互联、向偏远地区的无源负荷供电、满足保护环境要求等方面具有很大的优势。在传统的基于两电平或三电平电压源型换流器的轻型高压直流输电系统中,换流器交流侧需要使用体积庞大和笨重的滤波装置,桥臂的高电压需要功率开关器件直接串联来实现等,增大了换流站的占地空间,降低了换流器的工作效率。 本文针对传统轻型高压直流输电系统所存在的缺点,采用一种新的模块化多电平换流器作为轻型高压直流输电系统的换流器。分析了模块化多电平换流器的工作原理,并提出将其应用于轻型高压直流输电系统的调制算法和控制策略。最后对控制系统的具体实现方案进行一定的探讨。通过仿真验证所提出的调制算法和控制策略的正确性。具体说来,全文的主要工作体现在以下几个方面: 1、详细讲述模块化多电平换流器的拓扑结构、子模块的具体实现形式及工作原理,并提出适合该换流器的调制算法。 2、详细介绍组成轻型高压直流输电系统的电压源型换流器的工作原理,分析电压源型换流器的间接电流和直接电流控制策略。 3、对基于模块化多电平换流器的轻型高压直流输电系统进行仿真,验证所提出控制策略的正确性。 4、探讨解决模块化多电平换流器子模块直流侧电容电压的均衡问题,提出一种较为简单有效的控制方法。 5、提出基于模块化多电平换流器结构的轻型高压直流输电控制系统的实现方法,并重点讲述子模块的数字逻辑电路的实现方法。
上传时间: 2013-04-24
上传用户:huangzr5
随着全球汽车保有量的与日俱增,能源危机和环境污染正逐渐成为制约世界汽车工业发展的瓶颈。而新兴的混合动力汽车(HEV)在节能和排放上的优越性正逐步体现出来。由于采用“油、电”配合的方式来驱动车体,其所搭载电动机及其驱动控制系统的研究则成为混合动力汽车研发中的关键技术之一,它直接决定着整车的动力性,燃油经济性和排放指标。 论文首先比较了常见的几种电动汽车的性能,概括了混合动力汽车的优点,介绍了混合动力汽车电机及其控制系统技术的发展现状;其次探讨了几种常用交流电动机的性能优劣,由于永磁同步电机具有高效、高功率密度以及良好的调速性能,本文混合动力汽车传动系统选用永磁同步电机;根据混合动力汽车所搭载电动机在功率和扭矩上的要求以及永磁同步电机在结构上的特点,选取了发动机电机系统的结构布置形式;论文建立了永磁同步电动机的数学模型,分析了永磁同步电动机矢量控制的原理;设计了基于TMS320F2812DSP的永磁同步电动机矢量控制系统,详细阐述了功率驱动电路,速度及位置检测电路,电流反馈及过流保护电路,CAN通讯模块等系统中重要的组成单元;软件采用模块化的结构,阐述了关键子程序如电流采集、位置检测程序和SVPWM产生子程序。 最后,搭建了实验平台,对硬件进行了调试和修改,通过样机及系统台架试验,取得了大量的实验数据,检验了所设计样机的特性,发现其制作过程中的不足,并实现了电机控制系统的闭环控制,从而达到了对混合动力汽车用永磁同步电动机控制系统的探索与研究的目的。
上传时间: 2013-05-23
上传用户:kkchan200
蓄电池组已越来越广泛地应用于交通运输、电力、通信等诸多领域和部门,其寿命直接关系到能源的有效利用以及相应系统的整体寿命、可靠性和成本。本课题从提高电池寿命的角度研究串联蓄电池组的充电问题,基于前人使用磁放大器作后级调整的基础上,提出了一种新颖的基于开关管MOSFET后级调整和高频母线的蓄电池组分布式单体充电方法。所有二次侧电路通过高频母线的形式共用一个一次侧电路;在兼顾效率、体积和成本的前提下有效的解决了串联蓄电池组的充电不均衡问题。 论文对采用双管正激拓扑的高频母线产生电路的设计给出了说明;同时也介绍了几种后级调整方法及各自优缺点。针对后级调整中的同步问题,提出了几种产生同步锯齿波的解决方案。最后利用同步脉冲产生电路,采用最常见的UC3843芯片,产生稳定可靠的同步锯齿波,实现后级调整开关动作与母线方波电压的同步。并且针对多路后级调整场合下,采取措施减小了母线电压毛刺,同时也改善了电流采样波形。 论文设计了一套单体3500mAh、3.7V锂离子电池组的单体独立充电器,以双管正激电路为原边电路作为主模块,次级是以MOSFET作后级调整电路实现充电功能作为充电电路模块。试验中采用了四个充电电路模块,同时对四个锂离子电池单体分别独立充电。充电电路模块中,通过控制MOFET开关,可实现锂电池的恒流、恒压充电和满充切断,充电电压和充电电流可精确控制在1%以内。该充电电路并能显示电池充电状态,并在单体充电电路间传递充电状态信号,最后反馈给母线电路以控制母线电压输出的开通与关断。特别指出的是该电路的过放电检测功能,是直接利用电池自身电压来检测得出电池自身是否处于过放电状态判定信号,并在充电模块间传递,最后得出蓄电池组过放电判定信号。整机有较低的待机功耗,并均使用了低成本器件,进一步降低了成本。 论文给出了详细的设计过程,最后通过实验将该方案与串联充电方案比较,验证了该充电方案的可靠性与优越性。
上传时间: 2013-04-24
上传用户:木末花开
异步电动机直接转矩控制技术是近年来发展起来的一种新型、高性能交流调速技术。它利用电压源型逆变器的工作过程,控制定子磁链的走或停,即调整定子磁链与转子磁链的夹角大小,从而对电机转矩进行直接控制以获得良好的动态性能。 论文首先探讨了直接转矩控制技术的现状和发展趋势,阐述了直接转矩控制的基本原理,分析了常用的圆形磁链轨迹控制方法,详细介绍了直接转矩控制系统主要模块的设计和实现。在分析交流异步电机动态数学模型、转矩和磁链计算方程的基础上,分析了直接转矩控制的异步电动机在低速运行时存在转矩脉动和转速波动较大的问题。基于占空比控制和离散占空比控制的异步电动机直接转矩控制方法,由电机电磁转矩公式和合成电压矢量理论推导了直接计算占空比的方法,在不影响系统各方面性能指标的情况下使降低转矩脉动的计算量大大减少,方便了计算和使用。两种方法均具有系统结构简单、占空比计算量小等优点。研究结果验证了这两种方法的正确性和有效性。在第一种方法中加入了单神经元控制器,使系统的动静态性能得到了提高。接着对利用空间电压矢量调制的直接转矩控制系统进行了研究。仿真结果表明此种方法能够有效的降低转矩脉动,使系统性能得到提高。 以TMS320F2812DSP为CPU搭建了直接转矩控制硬件实验平台,调试了硬件电路。编写了相关软件流程图和程序清单。
上传时间: 2013-04-24
上传用户:cc111
随着用户对供电质量要求的进一步提高,模块化UPS 并联系统获得了越来越广泛的应用。本文以模块化UPS为研究对象,根据电路结构,将其分为直流部分模块化和交流部分模块化分别进行讨论。整流环节对Boost-PFC 电路进行并联控制,实现直流部分的模块化;逆变环节在瞬时电压PID 控制的基础上,引入了瞬时均流的并联控制策略,实现交流部分的模块化。 介绍了有源功率因数校正技术的基本原理和控制思路,分析了单管双Boost-PFC电路的工作过程,并将其简化等效成常规的Boost 电路进行分析和控制。根据控制系统的结构,分别对电流控制环和电压控制环进行了分析,得出了电感电流主要受电流指令的影响,而输入输出电压差的影响则相对比较小;输出电压主要受参考给定指令电压、缓启给定指令电压以及输出电流等因素的影响。根据电流环和电压环的解析表达式,给出了并联控制的方法及原理。 对单相电路、三相电路以及多模块并联电路分别进行了仿真验证,对多模块的并联系统进行了实验验证。建立了单相逆变器的数学模型,并加入PID 控制器,得到了输出电压的解析表达式,得出逆变器输出电压与参考给定电压和输出电流有关。利用极点配置的方法得到了模拟域PID 控制器参数的计算公式,并采用后向差分法,将其转换到数字域,得到了数字PID 控制器参数与模拟域参数的换算关系。通过实验测试和曲线拟合的办法,得到了实际逆变器的电路参数。通过对所设计的数字PID 控制器进行仿真和实验,验证了理论分析和计算。建立了PID 电压闭环的多逆变器并联系统数学模型,分析得出并联系统的输出电压主要由系统中各模块的平均给定电压决定,同时也受较高次的输出谐波电流影响,受输出基波电流影响相对较小;环流主要受模块的给定电压与系统平均给定电压的偏差影响。针对环流产生的原因,提出了一种瞬时均流控制策略来减小系统环流对给定电压偏差的增益,从而达到瞬时均流的目的。 对两逆变模块并联的系统在各种工况下进行了仿真和实验,验证了理论分析的正确性和这种瞬时均流控制策略的可行性。
上传时间: 2013-04-24
上传用户:ggwz258
随着国内交流伺服电机等硬件技术逐步成熟,高运算能力的控制芯片与电机控制技术相结合,具有高效、节能和可移植性好等特点,这样使得交流伺服系统成为现代电机伺服驱动系统的一个发展趋势。 本文主要是基于MCU研究和设计了交流永磁电机位置伺服控制系统。针对三相永磁同步电机的物理方程,通过坐标转换,在d-q旋转坐标系下建立转矩方程,采用Id=0的矢量控制策略,建立一套完整的全数字交流位置伺服控制系统。 硬件方面,采用的是瑞萨公司专用电机控制Tiny系列芯片M30262F8作为控制芯片,并由三菱公司的第三代IPM模块PS21564实现功率驱动,简化了系统电路,缩小了系统的体积,提高了系统的可靠性。由交流电流传感器检测三相定子绕组电流;由增量式磁性编码器检测永磁转子位置,并设计一种比较快速的转子初始检测方法。 软件方面,采用结构化语言C和单片机M16C汇编语言混编,实现了单片机初始化、三环控制、电流跟随型PWM控制,提高编写代码的效率,同时保证系统的实时控制性能;由软件方式实现经典PID控制和简单模糊控制相结合构成“串联校正”闭环控制系统,提高了系统的快速性和抗干扰能力。此外,本文对控制策略进行了研究,阐述了模糊PID控制策略;还介绍了SPWM、SVPWM和跟随型PWM调制。 实验结果表明,本文所设计的伺服控制系统能实现电机的启动,调速和定位等,并能达到系统的性能指标。
上传时间: 2013-05-19
上传用户:327000306
当今高新技术不断发展,越来越多的高精度仪器设备对输入电源,特别是对输入交流电源的稳压精度要求越来越高。与此同时,随着我国经济的发展和用电负载的急剧增加,电压波动和波形畸变等供电质量问题日趋突出,不能满足高精度仪器设备的需要,因而就需要在电网和这些设备之间增加高稳压精度、宽稳压范围的交流稳压电源。基于Delta逆变技术的交流稳压电源既能进行瞬时的交流电压稳定补偿,又能提高整流输入端的功率因数,减少谐波对电网的污染,因而具有重要的实际意义和研究价值。 本文采取串联补偿型变换器作为主电路的拓扑结构,并从能量双向传输方面对主电路进行了详细阐述。针对Delta逆变器工作特点对交流稳压电源的工作原理进行了分析,并提出一种正向补偿采取整流加高频斩波,负向补偿采取有源箝位Buck变换器的工作模式。建立Delta逆变器与电网相互作用的等效电路模型,得出了理想补偿电压与实际补偿电压定量关系式,分析了逆变输出滤波器的结构、位置对滤波效果的影响和电气参数对实际补偿效果的作用规律。完成了逆变器的输出滤波器、补偿变压器的设计和PWM整流器电容参数的计算。 针对稳压系统中Delta逆变器和PWM整流器两个主体环节,对Delta逆变器的前馈、反馈控制特性和PWM整流器的间接、直接电流控制特性分别进行了综合比较,并应用MATLAB软件建立了改进前馈控制与直接电流控制的仿真模型,对Delta逆变交流稳压速度和精度进行了系统仿真分析,给出了仿真波形,验证了文中所述控制策略的可行性。
上传时间: 2013-07-10
上传用户:1047385479