该文就多媒体信息的主体之一-图像信号的压缩和解压进行了分析,并结合实际课题所设计的数字图像监控系统对其中的图像解码过程进行了软硬件的实现.首先我们在ANALOG DEVICE公司的ADSP-2189上进行了解码系统的验证,就解码输出的质量进行了主观评价.通过软件仿真,我们还进一步得到了解码过程中,哪些指令占用较多的指令执行时间,哪些指令会成为硬件实现时的瓶颈.它为我们的FPGA优化设计提供了理论上的依据.综合考虑设计方案的复杂程度、系统规模、系统时延、器件成本等各项因素,通过对各种FPGA器件性能与开发工具的选择比较,决定选用Altera公司的FLEX10K器件来做最终的硬件实现.它不仅为图像解码系统的ASIC实现做了一定的理论分析和技术准备,也为FPGA技术在数字信号处理领域的应用开辟了新的研究方向.在硬件设计过程中,根据FPGA技术的优点,采用"自上而下"和"自下而上"相结合的设计方法,将整个系统进行功能模块分割并分别实现.所有处理模块均采用VERILIG语言编写,对其中的主要模块都进行了优化设计.通过这些优化不仅提高了解压性能,还减少了处理时间和所占用的硬件空间.最后通过仿真表明了所实现的图像解码系统具有良好的性能,具有一定的使用价值.
上传时间: 2013-06-26
上传用户:再见大盘鸡
近年来,随着计算机和通信技术的飞速发展,特别是网络的迅速普及和3C(计算机、通信、消费电子)合一的加速,微型化和专业化成为发展的新趋势,嵌入式产品已经成为了信息产业的主流,嵌入式系统技术也成为目前电子产品设计领域最为热门的技术之一,目前已经广泛地应用于军事国防、消费电子、网络通信、工业控制等各个领域。本文在研究视频采集发展现状和趋势的基础上,设计了一种基于32位处理器的嵌入式图像采集和传输系统。此套硬件系统可应用于LCD显示屏、桌面视频、多媒体、数字电视机、图像处理、可视电话和远程户外图像采集等领域。 该图像采集系统在硬件系统上以ARM芯片S3C44BOX为核心,利用CMOS图像传感器采集图像;以FIFO帧存储器暂存图像数据,解决了ARM芯片与图像传感器之间速率的不同步问题;并充分利用了FPGA/CPLD高性能、低功耗、低成本的优点,用CPID器件控制整个图像采集的时序逻辑。在软件平台移植了嵌入式操作系统’uClinux,并在此基础上开发了底层的驱动程序和应用程序。体积小巧,具备图像采集、显示和远程传输功能和良好的可扩展性。 全文共分为五个章节,第一章主要介绍了论文的课题背景和图像采集技术的发展现状,介绍了论文的研究目标和研究内容。第二章从硬件和软件两方面阐述了嵌入式图像采集系统的总体设计方案,详细介绍了硬件开发平台嵌入式系统和软件开发平台嵌入式操作系统各自的定义和特点。第三章主要介绍基于ARM的图像采集系统硬件设计方面的内容,包括各个模块的具体实现方案、系统硬件性能分析和硬件电路的抗干扰设计等。第四章研究了基于uClinux平台的几个主要模块的软件设计,主要包括图像传感芯片的初始化和采集程序的实现、LCD控制器的初始化和图像显示程序的实现、以太网控制器的初始化和图像数据传输程序的实现。第五章是对全文的一个总结,概括了作者所做的工作,提出所存在的不足并对后续的研究工作做了进一步的展望。
上传时间: 2013-04-24
上传用户:wangxuan
随着图像处理技术和投影技术的不断发展,人们对高沉浸感的虚拟现实场景提出了更高的要求,这种虚拟显示的场景往往由多通道的投影仪器同时在屏幕上投影出多幅高清晰的图像,再把这些单独的图像拼接在一起组成一幅大场景的图像。而为了给人以逼真的效果,投影的屏幕往往被设计为柱面屏幕,甚至是球面屏幕。当图像投影在柱面屏幕的时候就会发生几何形状的变化,而避免这种几何变形的就是图像拼接过程中的几何校正和边缘融合技术。 一个大场景可视化系统由投影机、投影屏幕、图像融合机等主要模块组成。在虚拟现实应用系统中,要实现高临感的多屏幕无缝拼接以及曲面组合显示,显示系统还需要运用几何数字变形及边缘融合等图像处理技术,实现诸如在平面、柱面、球面等投影显示面上显示图像。而关键设备在于图像融合机,它实时采集图形服务器,或者PC的图像信号,通过图像处理模块对图像信息进行几何校正和边缘融合,在处理完成后再送到显示设备。 本课题提出了一种基于FPGA技术的图像处理系统。该系统实现图像数据的AiD采集、图像数据在SRAM以及SDRAM中的存取、图像在FPGA内部的DSP运算以及图像数据的D/A输出。系统设计的核心部分在于系统的控制以及数字信号的处理。本课题采用XilinxVirtex4系列FPGA作为主处理芯片,并利用VerilogHDL硬件描述语言在FPGA内部设计了A/D模块、D/A模块、SRAM、SDRAM以及ARM处理器的控制器逻辑。 本课题在FPGA图像处理系统中设计了一个ARM处理器模块,用于上电时对系统在图像变化处理时所需参数进行传递,并能实时从上位机更新参数。该设计在提高了系统性能的同时也便于系统扩展。 本文首先介绍了图像处理过程中的几何变化和图像融合的算法,接着提出了系统的设计方案及模块划分,然后围绕FPGA的设计介绍了SDRAM控制器的设计方法,最后介绍了ARM处理器的接口及外围电路的设计。
上传时间: 2013-04-24
上传用户:1047385479
本文以“机车车辆轮对动态检测装置”为研究背景,以改进提升装置性能为目标,研究在Altera公司的FPGA(Field Programmable Gate Array)芯片Cyclone上实现图像采集控制、图像处理算法、JPEG(Joint Photographic Expert Group)压缩编码标准的基本系统。本文使用硬件描述语言Verilog,以RedLogic的RVDK开发板作为硬件平台,在开发工具OUARTUS2 6.0和MODELSIM SE 6.1B环境中完成软核的设计与仿真验证。 数据采集部分完成的功能是将由模拟摄像机拍摄到的图像信号进行数字化,然后从数据流中提取有效数据,加以适当裁剪,最后将奇偶场图像数据合并成帧,存储到存储器中。数字化及码流产生的功能由SAA7113芯片完成,由FPGA对SAA7113芯片初始化设置、控制,并对数字化后的数据进行操作。 图像处理算法部分考虑到实时性与算法复杂度等因素,从装置的图像处理流程中有选择性地实现了直方图均衡化、中值滤波与边缘检测三种图像处理算法。 压缩编码部分依据JPEG标准基本系统顺序编码模式,在FPGA上实现了DCT(Discrete Cosine Transform)变换、量化、Zig-Zag扫描、直流系数DPCM(Differential Pulse Code Modulation)编码、交流系数RLC(Run Length code)编码、霍夫曼编码等主要步骤,最后用实际的图像数据块对系统进行了验证。
上传时间: 2013-04-24
上传用户:qazwsc
随着信息技术和计算机技术的飞速发展,数字信号处理已经逐渐发展成一门关键的技术科学。图像处理作为一种重要的现代技术,己经在通信、航空航天、遥感遥测、生物医学、军事、信息安全等领域得到广泛的应用。图像处理特别是高分辨率图像实时处理的实现技术对相关领域的发展具有深远意义。另外,现场可编程门阵列FPGA和高效率硬件描述语言Verilog HDL的结合,大大变革了电子系统的设计方法,加速了系统的设计进程,为图像压缩系统的实现提供了硬件支持和软件保障。 本文主要包括以下几个方面的内容: (1)结合某工程的具体需求,设计了一种基于FPGA的图像压缩系统,核心硬件选用XILINX公司的Virtex-Ⅱ Pro系列FPGA芯片,存储器件选用MICRON公司的MT48LC4M16A2SDRAM,图像压缩的核心算法选用近无损压缩算法JPEG-LS。 (2)用Verilog硬件描述语言实现了JPEG-LS标准中的基本算法,为课题组成员进行算法改进提供了有力支持。 (3)用Verilog硬件描述语言设计并实现了SDRAM控制器模块,使核心压缩模块能够方便灵活地访问片外存储器。 (4)构建了图像压缩系统的测试平台,对实现的SDRAM控制器模块和JPEG-LS基本算法模块进行了软件仿真测试和硬件测试,验证了其功能的正确性。
上传时间: 2013-04-24
上传用户:stampede
三维彩色信息获取系统目的是获取对象的三维空间坐标和颜色信息。它是计算机视觉研究的重要内容,也是当前信息科学研究中的一个重要热点。 本文首先介绍了三维信息获取技术的意义和实时可重构三维激光彩色信息获取系统总体方案。该方案合理划分了系统的图像处理任务,充分地利用了拥有的硬、软件资源。阐述了基于FPGA处理器的硬件系统结构及其工作原理和系统工作时序。 本文还研究了图像处理系统中的数字逻辑设计,总结出了较完整、规范化的设计流程和方法,介绍了从图像处理算法到可编程逻辑器件的规范化映射方法,总结了在视频系统中的高级设计技巧,包括并行流水线技术和循环结构的硬件实现方式等。 为了说明提出的设计方法,本文分析了基于自适应阈值的结构光条纹中心的方向模板快速检测算法的硬件实现。该算法是把自适应阈值法与可变方向模板法相结合,具有稳定性好、精度高、计算简单、数据存储量小、实现速度快的特点,此外,该方法有利于硬件快速实现。实践证明这种方法是实用的、有效的。 本文的重点在于研制了具有完全自主知识产权的实时可重构三维激光彩色信息获取系统中视频图像处理专用集成电路。该集成电路是实现系统快速算法的核心,使用现场可编程器FPGA器件EPlK50实现提取激光线、提取人头轮廓线和提取中心颜色线算法;该集成电路还要实现系统所需的控制逻辑。控制部分包括将视频采集输出端口信号转化为RGB真彩色信号的数据锁存模块、各FIFO缓存器的输入输出控制模块和系统需要的其它信号控制模块。提出提取轮廓线快速算法,即由FPGA处理器与主机交互式共同快速完成提取人头正侧影轮廓线算法。该专用集成电路研制是整个实时可重构三维激光彩色信息获取系统实现的关键。
标签:
上传时间: 2013-07-23
上传用户:lguotao
这是数字图像处理的教程,比较专用与系统,pdf格式
上传时间: 2015-03-22
上传用户:gonuiln
这是数字图像处理的教程,比较专用与系统,pdf格式
上传时间: 2015-03-22
上传用户:杜莹12345
这是数字图像处理的教程,比较专用与系统,pdf格式
上传时间: 2015-03-22
上传用户:李梦晗
这是数字图像处理的教程,比较专用与系统,pdf格式
上传时间: 2013-12-02
上传用户:417313137