先生成一个T触发器,然后通过例化8次,然后产生行波计数器
上传时间: 2016-07-16
上传用户:陈紫红rora
该文档为差动输入级(恒流源、Ube倍增电路)音频功率放大器简介资料,讲解的还不错,感兴趣的可以下载看看…………………………
上传时间: 2021-10-21
上传用户:
基于OrCAD-PSpice的差动放大电路温度特性分析
上传时间: 2022-07-07
上传用户:
提出一种虚拟阻抗模型的电流互感器饱和判别方法, 它可以有效地识别区内外故障因电流互感器( TA) 饱和对差动保护的影响。在电力系统的线路、母线、主设备等一些差动保护中, 区外故障时, 在大的短路电流作用下TA 饱和容易造成保护误动。基于RL 模型的短数据窗算法可以测得保护安装点的二次等效系统阻抗, 它可以等效到在系统故障增量模型中虚拟一条阻抗支路。区内外故障TA 饱和时, 该支路虚拟阻抗会发生明显的变化。分析该阻抗在TA 饱和与否情况下的变化规律, 利用这种变化规律可以可靠、灵敏地判别出区内外故障TA 饱和, 是否闭锁差动保护, 提高差动保护的可靠性。
上传时间: 2013-12-11
上传用户:杜莹12345
最新的HDMI I.3(高清晰度多媒体接口1.3)标准把以前的HDMI 1.0 - 1.2标准所规定的数据传送速度提高了一倍,每对差动信号线的速度达到3.4 Gbps。由于数据传送速度这么高,要求电路板的电容小,确保信号的素质很好,这给电路板的设计带来了新的挑战。在解决这个问题,实现可靠的静电放电(ESD)保护时,这点尤其重要。在HDMI系统设计中增加ESD保护时,如果选用合适的办法,就可以把问题简化。泰科电子的ESD和过电流保护参考设计,符合3.4 GHz的HDMI 1.3规范,达到IEC 61000-4-2关于ESD保护的要求,并且可以优化电路板的空间,所有这些可以帮助设计人员减少风险。本文探讨在HDMI 1.3系统中设计ESD保护的要求和容易犯的错误。 概述 在高清晰度视频系统中增加ESD保护,提出了许多复杂而且令人为难的问题,这会增加成本,会延长产品上市的时间。人们在选择ESD保护方案时,往往是根据解决这个问题的办法实现起来是否容易。不过,最简单的办法也许不可能提供充分的ESD保护,或者在电路板上占用的空间不能让人最满意。有些时候,在开始时看上去是解决ESD保护问题的最好办法,到了后来,会发现需要使用多种电路板材来保证时基信号达到要求。在实现一个充分的静电放电保护时,往往需要在尺寸、静电放电保护的性能以及实现起来是否容易这几方面进行折衷。一直到现在仍然是这样。
上传时间: 2013-10-22
上传用户:18602424091
模块电源的电气性能是通过一系列测试来呈现的,下列为一般的功能性测试项目,详细说明如下: 电源调整率(Line Regulation) 负载调整率(Load Regulation) 综合调整率(Conmine Regulation) 输出涟波及杂讯(Ripple & Noise) 输入功率及效率(Input Power, Efficiency) 动态负载或暂态负载(Dynamic or Transient Response) 起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 1. 电源调整率 电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。 电源调整率通常以一正常之固定负载(Nominal Load)下,由输入电压变化所造成其输出电压偏差率(deviation)的百分比,如下列公式所示: [Vo(max)-Vo(min)] / Vo(normal) 2. 负载调整率 负载调整率的定义为开关电源于输出负载电流变化时,提供其稳定输出电压的能力。测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,测量正常负载下之输出电压值,再分别于轻载(Min)、重载(Max)负载下,测量并记录其输出电压值(分别为Vo(max)与Vo(min)),负载调整率通常以正常之固定输入电压下,由负载电流变化所造成其输出电压偏差率的百分比,如下列公式所示: [Vo(max)-Vo(min)] / Vo(normal) 3. 综合调整率 综合调整率的定义为电源供应器于输入电压与输出负载电流变化时,提供其稳定输出电压的能力。这是电源调整率与负载调整率的综合,此项测试系为上述电源调整率与负载调整率的综合,可提供对电源供应器于改变输入电压与负载状况下更正确的性能验证。 综合调整率用下列方式表示:于输入电压与输出负载电流变化下,其输出电压之偏差量须于规定之上下限电压范围内(即输出电压之上下限绝对值以内)或某一百分比界限内。 4. 输出杂讯 输出杂讯(PARD)系指于输入电压与输出负载电流均不变的情况下,其平均直流输出电压上的周期性与随机性偏差量的电压值。输出杂讯是表示在经过稳压及滤波后的直流输出电压上所有不需要的交流和噪声部份(包含低频之50/60Hz电源倍频信号、高于20 KHz之高频切换信号及其谐波,再与其它之随机性信号所组成)),通常以mVp-p峰对峰值电压为单位来表示。 一般的开关电源的规格均以输出直流输出电压的1%以内为输出杂讯之规格,其频宽为20Hz到20MHz。电源实际工作时最恶劣的状况(如输出负载电流最大、输入电源电压最低等),若电源供应器在恶劣环境状况下,其输出直流电压加上杂讯后之输出瞬时电压,仍能够维持稳定的输出电压不超过输出高低电压界限情形,否则将可能会导致电源电压超过或低于逻辑电路(如TTL电路)之承受电源电压而误动作,进一步造成死机现象。 同时测量电路必须有良好的隔离处理及阻抗匹配,为避免导线上产生不必要的干扰、振铃和驻波,一般都采用双同轴电缆并以50Ω于其端点上,并使用差动式量测方法(可避免地回路之杂讯电流),来获得正确的测量结果。 5. 输入功率与效率 电源供应器的输入功率之定义为以下之公式: True Power = Pav(watt) = Vrms x Arms x Power Factor 即为对一周期内其输入电压与电流乘积之积分值,需注意的是Watt≠VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.为功率因素(Power Factor),通常无功率因素校正电路电源供应器的功率因素在0.6~0.7左右,其功率因素为1~0之间。 电源供应器的效率之定义为为输出直流功率之总和与输入功率之比值。效率提供对电源供应器正确工作的验证,若效率超过规定范围,即表示设计或零件材料上有问题,效率太低时会导致散热增加而影响其使用寿命。 6. 动态负载或暂态负载 一个定电压输出的电源,于设计中具备反馈控制回路,能够将其输出电压连续不断地维持稳定的输出电压。由于实际上反馈控制回路有一定的频宽,因此限制了电源供应器对负载电流变化时的反应。若控制回路输入与输出之相移于增益(Unity Gain)为1时,超过180度,则电源供应器之输出便会呈现不稳定、失控或振荡之现象。实际上,电源供应器工作时的负载电流也是动态变化的,而不是始终维持不变(例如硬盘、软驱、CPU或RAM动作等),因此动态负载测试对电源供应器而言是极为重要的。可编程序电子负载可用来模拟电源供应器实际工作时最恶劣的负载情况,如负载电流迅速上升、下降之斜率、周期等,若电源供应器在恶劣负载状况下,仍能够维持稳定的输出电压不产生过高激(Overshoot)或过低(Undershoot)情形,否则会导致电源之输出电压超过负载组件(如TTL电路其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作)之承受电源电压而误动作,进一步造成死机现象。 7. 启动时间与保持时间 启动时间为电源供应器从输入接上电源起到其输出电压上升到稳压范围内为止的时间,以一输出为5V的电源供应器为例,启动时间为从电源开机起到输出电压达到4.75V为止的时间。 保持时间为电源供应器从输入切断电源起到其输出电压下降到稳压范围外为止的时间,以一输出为5V的电源供应器为例,保持时间为从关机起到输出电压低于4.75V为止的时间,一般值为17ms或20ms以上,以避免电力公司供电中于少了半周或一周之状况下而受影响。 8. 其它 在电源具备一些特定保护功能的前提下,还需要进行保护功能测试,如过电压保护(OVP)测试、短路保护测试、过功保护等
上传时间: 2013-10-22
上传用户:zouxinwang
最新的HDMI I.3(高清晰度多媒体接口1.3)标准把以前的HDMI 1.0 - 1.2标准所规定的数据传送速度提高了一倍,每对差动信号线的速度达到3.4 Gbps。由于数据传送速度这么高,要求电路板的电容小,确保信号的素质很好,这给电路板的设计带来了新的挑战。在解决这个问题,实现可靠的静电放电(ESD)保护时,这点尤其重要。在HDMI系统设计中增加ESD保护时,如果选用合适的办法,就可以把问题简化。泰科电子的ESD和过电流保护参考设计,符合3.4 GHz的HDMI 1.3规范,达到IEC 61000-4-2关于ESD保护的要求,并且可以优化电路板的空间,所有这些可以帮助设计人员减少风险。本文探讨在HDMI 1.3系统中设计ESD保护的要求和容易犯的错误。 概述 在高清晰度视频系统中增加ESD保护,提出了许多复杂而且令人为难的问题,这会增加成本,会延长产品上市的时间。人们在选择ESD保护方案时,往往是根据解决这个问题的办法实现起来是否容易。不过,最简单的办法也许不可能提供充分的ESD保护,或者在电路板上占用的空间不能让人最满意。有些时候,在开始时看上去是解决ESD保护问题的最好办法,到了后来,会发现需要使用多种电路板材来保证时基信号达到要求。在实现一个充分的静电放电保护时,往往需要在尺寸、静电放电保护的性能以及实现起来是否容易这几方面进行折衷。一直到现在仍然是这样。
上传时间: 2015-01-02
上传用户:zhuimenghuadie
目前电力系统正朝着设备数字化和网络互联化的方向发展,电力系统的行为也将会越来越复杂。作为电网故障分析必不可少的故障录波器,电网的日趋复杂化对其性能提出了更高的要求。FPGA技术和嵌入式系统的发展为故障录波器的性能改善提供了必要条件。 本文首先提出了一种基于以上技术的高性能分布式输电线路故障录波器的实现方案,简要分析了其软硬件结构和功能;接着针对故障录波装置中数据采集的高精度、高速度问题,提出了基于FPGA和AD7656的数据采集单元的设计方案;针对大容量故障数据的存储问题,设计了在内嵌PowerPC微处理器的FPGA上实现SDRAM控制器的方案,并运用modelsim6.0仿真工具对设计的SDRAM控制器进行了仿真;研究了在内嵌PowerPC微处理器上构建嵌入式系统的问题;最后讨论了行波测距算法在输电线路故障录波器中应用的相关问题。
上传时间: 2013-07-17
上传用户:asddsd
目前流行的功率放大器除采用集成电路功放外几乎都是用分立元件构成的OCL电路。基本电路由差动输入级、电压放大级、电流放大级(推动级)、功率输出级和保护电路组成。附图A是结构框、图B是实用电路例图,有结构简单的基本电路形式,也有增加了辅助电路和补偿电路的复杂电路形式。
标签: 功放电路图
上传时间: 2013-08-05
上传用户:change0329
共差摸
上传时间: 2013-10-13
上传用户:coeus