本文拟借助于神经网络良好的逼近能力,实现永磁同步电机的无位置传感器控制。 人工神经网络(Neural Network)可以逼近任意复杂非线性映射,具有很强的自学习自适应能力,十分适合于解决复杂的非线性控制问题。其中,BP神经网络是目前广泛应用的神经网络之一,得到了较为深入的研究,其结构简单,需要离线确定的参数少、泛化能力强、逼近精度高、实时性强,采用BP神经网络实现永磁同步电机的调速控制具有重要意义。 文中提出了基于BP神经网络的永磁同步电机自适应调速控制策略,建立了一种包含辨识网络和控制网络的双神经网络结构控制系统。辨识网络在线动态辨识系统输出并对控制网络参数进行调整,控制网络与PI控制方法相结合实现永磁同步电机自适应转速控制。仿真结果表明,该系统动态响应快、实时性较强、精度较高。 文中提出了一种基于混合训练算法的BP神经网络永磁同步电机无位置传感器控制方法。采用混沌优化和梯度下降法相结合的混合算法对BP神经网络进行离线训练后,将其用于永磁同步电机的转子位置角在线估计。结果表明,该训练算法可以有效地加快神经网络收敛速度,且估计的转子位置角误差较小、精度较高。 文中建立了以TMS320F2812芯片为核心的永磁同步电机调速控制系统,并进行了相应的软硬件设计,为实现永磁同步电机的各种控制策略奠定了实验基础。DSP控制系统为神经网络训练提供样本,为研究永磁同步电机的自适应调速控制和转子位置角估计创造了条件。
上传时间: 2013-05-23
上传用户:1101055045
随着电力电子技术的飞速发展,越来越多的电力电子装置被广泛应用到各个领域,其中相当一部分负荷具有非线性或具有时变特性,使电网中暂态冲击、无功功率、高次谐波及三相不平衡问题日趋严重,给电网的供电质量造成严重的污染和损耗.因此,对电力系统进行谐波抑制和无功补偿,提高电网供电质量变得十分重要.电力有源滤波器(Active Power Filter,简称APF)与无源滤波器相比,APF具有高度可控制和快速响应特性,并且能跟踪补偿各次谐波、自动产生所需变化的无功功率和谐波功率,其特性不受系统影响,无谐波放大威胁.并联型电力有源滤波器(Shunt Active Power Filter,简称SAPF)更是得到了广泛的应用. 近年来,自适应算法中的递推最小二乘法(简称RLS)应用越来越广泛,该算法简单,收敛速度快.应用基于RLS自适应算法的滤波器(简称RLS滤波器),可以快速有效的滤除杂波,同时自动调整滤波器参数,不断改进滤波性能,最终得到所需的信号. 本文研究了基于平均功率和RLS自适应算法的并联型有源滤波器.它的参考电流是一个同电网相电压同相位的三相平衡的有功电流,它包含两个分量:一个是由实测的三相负载瞬时功率计算得到的,基于平均功率算法的电网应该为负载各相提供的有功电流瞬时参考值;另一个是为了维持有源滤波器中逆变器的直流母线电压基本恒定,主要通过RLS滤波器计算得出的电网各相应该提供的有功电流瞬时参考值.两个分量的计算共同构成了该有源滤波器参考电流的计算.补偿电流指令值与实际补偿电流比较生成控制逆变桥工作的PWM脉冲,生成补偿电流,达到补偿负载无功和抑制谐波的目的. 应用RLS滤波器得到维持直流母线电压恒定的直流侧有功系数A<,dc>,克服了传统PI控制中参数难以得到且由于参数过于敏感而导致补偿后电流纹波太大的问题.使得当稳态时SAPF自身的功率损耗和暂态负载变化时因为直流侧电容提供电网和负载之间的有功功率差而引起的电压的波动迅速反馈到指令电流的计算中.RLS算法收敛快,SAPF实时性大大提高.基于该方法的SAPF结构简单,无需锁相器. 根据本文的算法应用MATAB建立了仿真系统,仿真结果表明基于该算法的SAPF的可行性和实时性.
上传时间: 2013-04-24
上传用户:mfhe2005
永磁同步电机(Permanent Magnet Synchronous Motor)因功率密度大、效率高、过载能力强、控制性能优良等优点,在中小容量调速系统和高精度调速场合发展迅速。但由于永磁同步电机的磁场具有独特的交叉耦合和交叉饱和现象,且其控制系统是一个强非线性、时变和多变量系统,要实现高精度调速就需对其控制策略进行深入研究。 永磁同步电机调速系统中,位置传感器的存在使得系统成本增加、结构复杂、可靠性降低,所以永磁同步电机的无位置传感器控制成为一个新的研究热点。本文拟借助于神经网络良好的逼近能力,实现永磁同步电机的无位置传感器控制。 人工神经网络(Neural Network)可以逼近任意复杂非线性映射,具有很强的自学习自适应能力,十分适合于解决复杂的非线性控制问题。其中,BP神经网络是目前广泛应用的神经网络之一,得到了较为深入的研究,其结构简单,需要离线确定的参数少、泛化能力强、逼近精度高、实时性强,采用BP神经网络实现永磁同步电机的调速控制具有重要意义。 文中提出了基于BP神经网络的永磁同步电机自适应调速控制策略,建立了一种包含辨识网络和控制网络的双神经网络结构控制系统。辨识网络在线动态辨识系统输出并对控制网络参数进行调整,控制网络与PI控制方法相结合实现永磁同步电机自适应转速控制。仿真结果表明,该系统动态响应快、实时性较强、精度较高。 文中提出了一种基于混合训练算法的BP神经网络永磁同步电机无位置传感器控制方法。采用混沌优化和梯度下降法相结合的混合算法对BP神经网络进行离线训练后,将其用于永磁同步电机的转子位置角在线估计。结果表明,该训练算法可以有效地加快神经网络收敛速度,且估计的转子位置角误差较小、精度较高。 文中建立了以TMS320F2812芯片为核心的永磁同步电机调速控制系统,并进行了相应的软硬件设计,为实现永磁同步电机的各种控制策略奠定了实验基础。DSP控制系统为神经网络训练提供样本,为研究永磁同步电机的自适应调速控制和转子位置角估计创造了条件。
上传时间: 2013-07-03
上传用户:kakuki123
心音信号是人体最重要的生理信号之一,包含心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量生理病理信息。心音信号分析与识别是了解心脏和血管状态的一种不可缺少的手段。本文针对目前该研究领域中存在的分析方法问题和分类识别技术难点展开了深入的研究,内容涉及心音构成的分析、心音信号特征向量的提取、正常心音信号(NM)和房颤(AF)、主动脉回流(AR)、主动脉狭窄(AS)、二尖瓣回流(MR)4种心脏杂音信号的分类识别。本文的工作内容包括以下5个方面: a)心音信号采集与预处理。本文采用自行研制的带有录音机功能的听诊器实现对心音信号的采集。通过对心音信号噪声分析,选用小波降噪作为心音信号的滤波方法。根据实验分析,选择Donoho阈值函数结合多级阈值的方法作为心音信号预处理方案。 b)心音信号时频分析方法。文中采用5种时频分析方法分别对心音信号进行了时频谱特性分析,结果表明:不同的时频分析方法与待分析心音信号的特性有密切关系,即需要在小的交叉项干扰与高的时频分辨率之间作综合的考虑。鉴于此,本文提出了一种自适应锥形核时频(ATF)分析方法,通过实验验证该分布能较好地反映心音信号的时频结构,其性能优于一般锥形核分布(CKD)以及Choi-Williams分布(CWD)、谱图(SPEC)等固定核时频分析方法,从而选择自应锥形核时频分析方法进行心音信号分析。 c)心音信号特征向量提取。根据对3M Littmann() Stethoscopes[31]数据库中标准心音信号的时频分析结果,提取8组特征数据,通过Fihser降维处理方法提取出了实现分类可视化,且最易于分类的心音信号的2维特征向量,作为心音信号分类的特征向量。 d)心音信号分类方法。根据心音信号特征向量组成的散点图,研究了支持向量机核函数、多分类支持向量机的选取方法,同时,基于分类的目的 性和可信性,本文提出以分类精度最大为判断准则的核函数参数与松弛变量的优化方法,建立了心音信号分类的支持向量机模型,选取标准数据库中NM、AF、AR、AS、MR每类心音信号的80组2维特征向量中每类60组数据作为支持向量机的学习样本,对余下的每类20组数据进行测试,得到每类的分类精度(Ar)均为100%,同时对临床上采集的与上述4种同类心脏杂音信号和正常心音信号中每类24个心动周期进行分类实测,分类精度分别为:NM、AF、MR的分类精度均为100%,而AR、AS均为95.83%,验证了该方法的分类有效性。 e)心音信号分析与识别的软件系统。本文以MATLAB语言的可视化功能实现了心音信号分析与识别的软件运行平台构建,可完成对心音信号的读取、预处理,绘制时-频、能量特性的三维图及两维等高线图;同时,利用MATLAB与EXCEL的动态链接,实现对心音信号分析数据的存储以及统计功能;最后,通过对心音信号2维特征向量的分析,实现心音信号的自动识别功能。 本文的研究特色主要体现在心音信号特征向量提取的方法以及多分类支持向量机模型的建立两方面。 综上所述,本文从理论与实践两方面对心音信号进行了深入的研究,主要是采用自适应锥形核时频分析方法提取心音信号特征向量,根据心音信号特征向量组成的散点图,建立心音信号分类的支持向量机模型,并对正常心音信号和4种心脏杂音信号进行了分类研究,取得了较为满意的分类结果,但由于用于分类的心脏杂音信号种类及数据量尚不足,因此,今后的工作重点是采集更多种类的心脏杂音信号,进一步提高心音信号分类精度,使本文研究成果能最终应用于临床心脏量化听诊。 关键词:心音信号,小波降噪,非平稳信号,心脏杂音,信号处理,时频分析,自适应,支持向量机
上传时间: 2013-04-24
上传用户:weixiao99
直流电动机具有优良的调速特性,调速平滑、简单,且范围大.同时其过载能力大,能承受频繁的冲击负载,广泛应用于切削机床、造纸机等高性能可控电力拖动领域. 以往直流调速系统控制器采用分立元件,其故障率高,稳定性差,技术落后,很难满足生产的需要.随着计算机技术及通信技术的发展,数字化直流调速系统克服了这一不足,成为直调系统的主流. 本文设计的系统以DSP为主控芯片,监控系统控制芯片使用P89C669单片机,通过上下位机的数据通讯,实现系统参数设计和调节的数字化.下面是具体工作阐述: 1.设计了电封闭直流调速系统的硬件和软件,完成两台同轴电机的电封闭实验. 2.主电路使用三菱公司的IPM-PS21867作为功率输出模块,同时设计了驱动保护电路、控制电路以及通信保护电路. 3.采用PWM控制方式,编写了系统的软件.主要包括主程序、通讯显示程序以及中断服务子程序. 4.完成了样机的整体布局和调试,实现了系统的双闭环控制. 5.针对由于负载、转动惯量等的变化影响系统的调速性能,本文基于模型参考自适应控制原理,给出了双闭环调速系统自适应的Narendra方案的具体实现,通过仿真验证方案的可行性.
上传时间: 2013-04-24
上传用户:kennyplds
本文的目的在于设计一个自适应噪音抵消系统,使其能消除含噪语音信号中的背景噪音,达到提高语音信号质量的目的.主要工作分为两大部分.本文在第一部分介绍了自适应数字滤波器的基本理论思想,具体阐述了自适应噪声抵消系统基本原理,并对自适应噪声抵消系统的指标、抵消性能进行了计算分析.自适应滤波器的算法是整个系统的核心,在第一部分中,对两种最基本的自适应算法,进行了详细的介绍和分析,并针对两种算法的优缺点进行了详细的比较.这一部分中最关键的是对设计的噪声抵消系统进行计算机仿真,验证系统设计的合理性和算法的正确性.通过对自适应噪声抵消器的MATLAB仿真及对仿真图形的分析,验证了系统设计和自适应算法的可行性.第二部分主要完成自适应噪声抵消系统的硬件设计和软件编程.在第一部分计算机仿真分析的基础上,利用高速信号处理芯片DSP(TMS320LF2407)设计了一个噪声干扰抵消系统,在高速信号处理芯片(TMS320LF2407)上开发实现了自适应LMS算法.
标签: DSP
上传时间: 2013-06-28
上传用户:zklh8989
自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信号或需要处理非平稳信号时,自适应滤波器可以提供一种吸引人的解决方法,而且其性能通常远优于用常规方法设计的固定滤波器。此外,自适应滤波器还能提供非自适应方法所不可能提供的新的信号处理能力。 本论文从自适应滤波器研究的重要意义入手,介绍了线性自适应滤波器的基本原理、算法及设计方法,对几种基于最小均方误差准则或最小平方误差准则的自适应滤波器算法进行研究,最终基于一改近的LMS算法设计复数自适应滤波器,并以VHDL语言编写在maxplus平台上进行仿真测试。
上传时间: 2013-07-11
上传用户:W51631
自适应滤波器的硬件实现一直是自适应信号处理领域研究的热点。随着电子技术的发展,数字系统功能越来越强大,对器件的响应速度也提出更高的要求。 本文针对用通用DSP 芯片实现的自适应滤波器处理速度低和用HDL语言编写底层代码用FPGA实现的自适应滤波器开发效率低的缺点,提出了一种基于DSP Builder系统建模的设计方法。以随机2FSK信号作为研究对象,首先在matlab上编写了LMS去噪自适应滤波器的点M文件,改变自适应参数,进行了一系列的仿真,对算法迭代步长、滤波器的阶数与收敛速度和滤波精度进行了研究,得出了最佳自适应参数,即迭代步长μ=0.0057,滤波器阶数m=8,为硬件实现提供了参考。 然后,利用最新DSP Builder工具建立了基于LMS算法的8阶2FSK信号去噪自适应滤波器的模型,结合多种EDA工具,在EPFlOKl00EQC208-1器件上设计出了最高数据处理速度为36.63MHz的8阶LMS自适应滤波器,其速度是文献[3]通过编写底层VHDL代码设计的8阶自适应滤波器数据处理速度7倍多,是文献[50]采用DSP通用处理器TMS320C54X设计的8阶自适应滤波器处理速度25倍多,开发效率和器件性能都得到了大大地提高,这种全新的设计理念与设计方法是EDA技术的前沿与发展方向。 最后,采用异步FIFO技术,设计了高速采样自适应滤波系统,完成了对双通道AD器件AD9238与自适应滤波器的高速匹配控制,在QuartusⅡ上进行了仿真,给出了系统硬件实现的原理框图,并将采样滤波控制器与异步FIF0集成到同一芯片上,既能有效降低高频可能引起的干扰又降低了系统的成本。
上传时间: 2013-06-01
上传用户:ynwbosss
设计并实现具有硬件滤波空气清新器的信息采集系统,根据空气的复杂性以及随机性,结合自适应滤波器的原理,提出一种新的空气信息采集系统设计方法。该方法利用最小均方(LMS)自适应滤波器进行软件滤波,针对空气
上传时间: 2013-06-14
上传用户:sjb555
自适应天线技术、扩频技术是提高通信系统抗干扰能力的有效手段.本课题短波电台扩频-自适应天线抗干扰系统的目的是将自适应天线技术与扩频技术结合起来,使短波通信系统具有对抗各种干扰的性能,保证在恶劣的电磁环境中实现正常通信.本文主要工作如下:·研究了强干扰环境下的PN码同步,给出了设计中关键指标的选取原则;·分析了参考信号提取的原理,提出了适合于本课题的设计方案;·给出了扩频伪随机码PN1、导引信号伪随机码PN2的选取方法;·基于FPGA,给出了系统设计中PN码同步,参考信号提取的具体实现.
上传时间: 2013-04-24
上传用户:zzbbqq99n