心音信号是人体最重要的生理信号之一,包含心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量生理病理信息。心音信号分析与识别是了解心脏和血管状态的一种不可缺少的手段。本文针对目前该研究领域中存在的分析方法问题和分类识别技术难点展开了深入的研究,内容涉及心音构成的分析、心音信号特征向量的提取、正常心音信号(NM)和房颤(AF)、主动脉回流(AR)、主动脉狭窄(AS)、二尖瓣回流(MR)4种心脏杂音信号的分类识别。本文的工作内容包括以下5个方面: a)心音信号采集与预处理。本文采用自行研制的带有录音机功能的听诊器实现对心音信号的采集。通过对心音信号噪声分析,选用小波降噪作为心音信号的滤波方法。根据实验分析,选择Donoho阈值函数结合多级阈值的方法作为心音信号预处理方案。 b)心音信号时频分析方法。文中采用5种时频分析方法分别对心音信号进行了时频谱特性分析,结果表明:不同的时频分析方法与待分析心音信号的特性有密切关系,即需要在小的交叉项干扰与高的时频分辨率之间作综合的考虑。鉴于此,本文提出了一种自适应锥形核时频(ATF)分析方法,通过实验验证该分布能较好地反映心音信号的时频结构,其性能优于一般锥形核分布(CKD)以及Choi-Williams分布(CWD)、谱图(SPEC)等固定核时频分析方法,从而选择自应锥形核时频分析方法进行心音信号分析。 c)心音信号特征向量提取。根据对3M Littmann() Stethoscopes[31]数据库中标准心音信号的时频分析结果,提取8组特征数据,通过Fihser降维处理方法提取出了实现分类可视化,且最易于分类的心音信号的2维特征向量,作为心音信号分类的特征向量。 d)心音信号分类方法。根据心音信号特征向量组成的散点图,研究了支持向量机核函数、多分类支持向量机的选取方法,同时,基于分类的目的 性和可信性,本文提出以分类精度最大为判断准则的核函数参数与松弛变量的优化方法,建立了心音信号分类的支持向量机模型,选取标准数据库中NM、AF、AR、AS、MR每类心音信号的80组2维特征向量中每类60组数据作为支持向量机的学习样本,对余下的每类20组数据进行测试,得到每类的分类精度(Ar)均为100%,同时对临床上采集的与上述4种同类心脏杂音信号和正常心音信号中每类24个心动周期进行分类实测,分类精度分别为:NM、AF、MR的分类精度均为100%,而AR、AS均为95.83%,验证了该方法的分类有效性。 e)心音信号分析与识别的软件系统。本文以MATLAB语言的可视化功能实现了心音信号分析与识别的软件运行平台构建,可完成对心音信号的读取、预处理,绘制时-频、能量特性的三维图及两维等高线图;同时,利用MATLAB与EXCEL的动态链接,实现对心音信号分析数据的存储以及统计功能;最后,通过对心音信号2维特征向量的分析,实现心音信号的自动识别功能。 本文的研究特色主要体现在心音信号特征向量提取的方法以及多分类支持向量机模型的建立两方面。 综上所述,本文从理论与实践两方面对心音信号进行了深入的研究,主要是采用自适应锥形核时频分析方法提取心音信号特征向量,根据心音信号特征向量组成的散点图,建立心音信号分类的支持向量机模型,并对正常心音信号和4种心脏杂音信号进行了分类研究,取得了较为满意的分类结果,但由于用于分类的心脏杂音信号种类及数据量尚不足,因此,今后的工作重点是采集更多种类的心脏杂音信号,进一步提高心音信号分类精度,使本文研究成果能最终应用于临床心脏量化听诊。 关键词:心音信号,小波降噪,非平稳信号,心脏杂音,信号处理,时频分析,自适应,支持向量机
上传时间: 2013-04-24
上传用户:weixiao99
自适应滤波器的硬件实现一直是自适应信号处理领域研究的热点。随着电子技术的发展,数字系统功能越来越强大,对器件的响应速度也提出更高的要求。 本文针对用通用DSP 芯片实现的自适应滤波器处理速度低和用HDL语言编写底层代码用FPGA实现的自适应滤波器开发效率低的缺点,提出了一种基于DSP Builder系统建模的设计方法。以随机2FSK信号作为研究对象,首先在matlab上编写了LMS去噪自适应滤波器的点M文件,改变自适应参数,进行了一系列的仿真,对算法迭代步长、滤波器的阶数与收敛速度和滤波精度进行了研究,得出了最佳自适应参数,即迭代步长μ=0.0057,滤波器阶数m=8,为硬件实现提供了参考。 然后,利用最新DSP Builder工具建立了基于LMS算法的8阶2FSK信号去噪自适应滤波器的模型,结合多种EDA工具,在EPFlOKl00EQC208-1器件上设计出了最高数据处理速度为36.63MHz的8阶LMS自适应滤波器,其速度是文献[3]通过编写底层VHDL代码设计的8阶自适应滤波器数据处理速度7倍多,是文献[50]采用DSP通用处理器TMS320C54X设计的8阶自适应滤波器处理速度25倍多,开发效率和器件性能都得到了大大地提高,这种全新的设计理念与设计方法是EDA技术的前沿与发展方向。 最后,采用异步FIFO技术,设计了高速采样自适应滤波系统,完成了对双通道AD器件AD9238与自适应滤波器的高速匹配控制,在QuartusⅡ上进行了仿真,给出了系统硬件实现的原理框图,并将采样滤波控制器与异步FIF0集成到同一芯片上,既能有效降低高频可能引起的干扰又降低了系统的成本。
上传时间: 2013-06-01
上传用户:ynwbosss
自适应信号处理的理论和技术已经成为人们常用滤波和去噪技术。文中讲述了自适应滤波的原理以及LMS算法和RLS算法两种基本自适应算法的原理及步骤。并用MATLAB分别对两种算法进行了自适应滤波仿真和实现。
上传时间: 2013-11-26
上传用户:1051290259
文中针对水下自主航行器提出了一种新型的基于捷联惯导(SINS)和GPS的组合导航系统设计方案。该方案以捷联惯导作为主系统,同时利用GPS重调捷联惯导系统,建立了该组合导航系统的卡尔曼滤波模型,设计了输出校正间接法的卡尔曼滤波算法和Sage-husa自适应卡尔曼滤波算法。仿真结果表明由于GPS位置和速度信息的引入,一定程度上克服了捷联惯导系统误差状态发散现象,提高了导航精度。同时通过两种算法的对比,Sage-husa自适应卡尔曼滤波算法则具有更高的滤波精度和稳定性,能够更好的满足长时间远距离导航的要求。
标签: Sage-husa AUV 自适应滤波算法 组合导航
上传时间: 2013-10-11
上传用户:jeffery
为有效合理利用雷达资源和解决雷达测量值与运动状态间的非线性关系以及目标状态本身可能出现的非线性,提出了一种基于交互式多模型粒子滤波(IMMPF)的相控阵雷达自适应采样目标跟踪方法。将交互式多模型粒子滤波一步预测值的后验克拉美罗矩阵代替预测协方差矩阵,通过该矩阵的迹与某一门限值比较来更新采样周期以适应目标运动状态的变化。将该方法与基于量测转换的IMM自适应采样算法进行仿真实验,表明了该算法的有效性。
上传时间: 2013-10-09
上传用户:1037540470
这是用MATLAB制作的自适应滤波算法的源码
上传时间: 2015-03-22
上传用户:龙飞艇
有需要自适应滤波算法的来,希望对大家有帮助
标签: 自适应滤波算法
上传时间: 2015-03-22
上传用户:waitingfy
基于TMS320C32的自适应滤波程序,已调试通过.可以和低通滤波做比较 观察其优点 开发环境
上传时间: 2013-12-24
上传用户:cuiyashuo
一个不错的自适应滤波演示程序,包括固定带通滤波器和可变带通滤波器的演示.
上传时间: 2015-04-10
上传用户:天涯
自适应滤波 自适应滤波 的c程序
上传时间: 2015-04-11
上传用户:youth25