基于彩色路径识别的视觉导航方法是当前自动导航小车领域的研究热点和方向。视觉导航是指根据地面路径和被控对象之间的位置偏差控制其运行的方向,因此,地面彩色路径图像的摄取及其识别处理就成为视觉导航系统中的基础和关键。在当前的视觉导航系统设计中,图像处理的硬件平台都是基于通用微处理器,嵌入式微处理器或者DSP进行设计的。这些处理器一个共同的特点就是数据串行处理,而图像处理过程涉及大量的并行处理操作,因此传统的串行处理方式满足不了图像处理的实时性要求。 鉴于微处理器这方面的不足,作者提出一种使用FPGA实现图像识别的并行处理方案,并据此设计一个智能图像传感器。该传感器采用先进的FPGA技术,将图像采集及其显示,路径的识别处理以及通信控制等模块集成在一个芯片上,形成一个片上系统(SOC)。其主要功能是对所采集的彩色路径图像进行识别处理,获得彩色路径的坐标及其方向角,并将处理结果发送给上位机,为自动导航提供控制依据。 本文将彩色路径的识别处理过程划分为三个阶段,第一阶段为颜色聚类识别,以获得二值路径图像,第二阶段为数学形态学运算,用于对第一阶段中获得的二值图像进行去斑处理,第三阶段为路径中心线的定位及其方向角的测量。图像传感器与上位机的通信采用异步串行方式,由于上位机需要控制该传感器执行多种任务,作者定义一种基于异步串行通信的应用层协议,用于上位机对传感器的控制。在图像的显示中,为了弥补图像采集的速率和VGA显示速率的不匹配,作者提出一种基于单端口存储器的图像帧缓冲机制,通过VGA接口将采集的图像实时地显示出来。 根据上述思想,作者完成了系统的硬件电路设计,并对整个系统进行了现场调试。调试结果表明,传感器系统的各个模块都能正常工作,FPGA中的数字逻辑电路能够实时地将路径从图像中准确地识别出来,.充分体现了FPGA对路径图像的高速处理优势,达到了设计预期目标,在一定程度上丰富了路径图像识别处理的技术和方法。
上传时间: 2013-04-24
上传用户:ghostparker
《计算机组成原理》是计算机系的一门核心课程。但是它涉及的知识面非常广,内容包括中央处理器、指令系统、存储系统、总线和输入输出系统等方面,学生在学习该课程时,普遍觉得内容抽象难于理解。但借助于该计算机组成原理实验系统,学生通过实验环节,可以进一步融会贯通学习内容,掌握计算机各模块的工作原理,相互关系的来龙去脉。 为了增强实验系统的功能,提高系统的灵活性,降低实验成本,我们采用FPGA芯片技术来彻底更新现有的计算器组成原理实验平台。该技术可根据用户要求为芯片加载由VHDL语言所编写出的不同的硬件逻辑,FPGA芯片具有重复编程能力,使得系统内硬件的功能可以像软件一样被编程,这种称为“软”硬件的全新系统设计概念,使实验系统具有极强的灵活性和适应性。它不仅使该系统性能的改进和扩充变得十分简易和方便,而且使学生自己设计不同的实验变为可能。计算机组成原理实验的最终目的是让学生能够设计CPU,但首先,学生必须知道CPU的各个功能部件是如何工作,以及相互之间是如何配合构成CPU的。因此,我们必须先设计出一个教学用的以FPGA芯片为核心的硬件平台,然后在此基础上开发出VHDL部件库及主要逻辑功能,并设计出一套实验。 本文重点研究了基于FPGA芯片的VHDL硬件系统,由于VHDL的高标准化和硬件描述能力,现代CPU的主要功能如计算,存储,I/O操作等均可由VHDL来实现。同时设计实验内容,包括时序电路的组成及控制原理实验、八位运算器的组成及复合运算实验、存储器实验、数据通路实验、浮点运算器实验、多流水线处理器实验等,这些实验形成一个相互关联的系统。每个实验先由教师讲解原理及原理图,学生根据教师提供的原理图,自己用MAX+PLUSII完成电路输入,学生实验实际上是编写VHDL,不需要写得很复杂,只要能调用接口,然后将程序烧入平台,这样既不会让学生花太多的时间在画电路图上,又能让学生更好的理解每个部件的工作原理和工作过程。 论文首先研究分析了FPGA硬件实验平台,即实验系统的硬件组成。系统采用FPGA-XC4010EPC84,62256CPLD以及其他外围芯片(例如74LS244,74LS275)组成。根据不同的实验要求,规划不同实验控制逻辑。用户可选择不同的实验逻辑,通过把实验逻辑下载到FPGA芯片中构成自己的实验平台。 其次,论文详细的阐述了VHDL模块化设计,如何运用VHDL技术来依次实现CPU的各个功能部件。VHDL语言作为一种国际标准化的硬件描述语言,自1987年获得IEEE批准以来,经过了1993年和2001年两次修改,至今已被众多的国际知名电子设计自动化(EDA)工具研发商所采用,并随同EDA设计工具一起广泛地进入了数字系统设计与研发领域,目前已成为电子业界普遍接受的一种硬件设计技术。再次,论文针对实验平台中遇到的较为棘手的多流水线等问题,也进行了深入的阐述和剖析。学生需要什么样的实验条件,实验内容及步骤才能了解当今CPU所采用的核心技术,才能掌握CPU的设计,运行原理。另外,本论文的背景是需要学生熟悉基本的VHDL知识或技能,因为实验是在编写VHDL代码的前提下完成的。 本文在基于实验室的环境下,基本上较为完整的实现了一个基于FPGA的实验平台方案。在此基础上,进行了部分功能的测试和部分性能方面的分析。本论文的研究,为FPGA在实际系统中的应用提供研究思路和参考方案。论文的研究结果将对FPGA与VHDL标准的进一步发展具有重要的理论和现实意义。
上传时间: 2013-04-24
上传用户:小强mmmm
光斑质心检测系统是APT精跟踪伺服系统的关键技术之一,目前的光斑检测系统大多是基于PC机的,存在着高速实时性、稳定性问题。在总结各种检测算法的基础上,本文提出了基于FPGA的图像处理算法,实现了激光光斑中心的高速实时检测。 文中主要采用3×3窗口模块和自适应阈值模块,先对CCD输入数据进行处理,判断光斑的范围,然后再运用光斑的质心算法对光斑所占的像元进行运算,得出光斑位置的脱靶量,最后用VGA格式将图像显示在LCD上。本文达到了的3000帧/s的脱靶量帧速,精度为2urad的技术指标,实现了高速率、高精度的精跟踪要求。
上传时间: 2013-04-24
上传用户:林鱼2016
在图像的实时处理中,消除图像旋转是一项实用的图像处理技术,无论在军事还是民用设施中都得以广泛的应用。目前,消除图像旋转的技术有机械式、光学式、电子式。其中电子消旋发展最快,也是图像消旋技术未来发展的趋势。 本次课题是应海军某部的要求,为海军测量船的图像观测系统消除图像旋转。本文详细研究了视频信号的特点,提出了利用FPGA和DSPs为主架构的视频图像处理平台,以EP20K600EBC652—2X为核心处理器的实时图像消旋系统。该平台利用旋转算法将原图像反向旋转相应的角度,再用双线性插值方法进行重采样,从而得到消旋后的图像。因为这次图像旋转角度是通过机械设备测得的,所以是一种机械加电子的图像消旋系统。 本文论述了图像消旋算法及其优化,详细说明整个系统的设计思路,及其软硬件实现,包括PCB设计,DSPs的软硬件开发以及FPGA的相关设计。目前,系统已正常工作,实现了图像的实时消旋的目标。
上传时间: 2013-08-05
上传用户:DanXu
本书涉及大量丰富的、工程师所喜好的技术细节如多种不同的设计流程、工具和概念。此外本书还涵盖了一系列技术层次相对低的主题,如基本概念等。
上传时间: 2013-07-20
上传用户:D&L37
随着数字图像处理的应用领域不断扩大,实时处理技术成为研究的热点。VLSI技术的迅猛发展为数字图像实时处理技术提供了硬件基础。其中FPGA(现场可编程门阵列)的特点使其在图像采集和处理方面的应用显得更加经济、灵活、方便。 本文设计了一种以FPGA为工作核心,并实现了PCI接口的图像采集压缩系统。整个系统采用了自顶向下的设计方案,先把系统分成了三大块,即图像采集、PCI接口和图像压缩,然后分别设计各个大模块中的子模块。 首先,利用FPGA对专用视频转换器SAA7111A进行控制,因为SAA7111A是采用IC总线模块,从而完成了对SAA7111A的控制,并通过设计图像采集模块、读/写数据模块、总线管理模块等,实现把标准的模拟视频信号转换成数字视频信号并采集的功能。 其次,在了解PCI规范的前提下,深入地分析了PCI时序和地址配置空间等,设计了简化逻辑的状态机,并用VHDL硬件描述语言设计了程序,完成了简化逻辑的PCI接口设计在FPGA芯片内部的实现,达到了一33MHz、32位数据宽度、支持猝发传输的PCI从设备模块的接口功能,与传统的使用PCI专用接口芯片来实现的PCI接口比较来看,更加节约了系统的逻辑资源,降低了成本,增加了设计的灵活性。 再次,设计了WINDOWS下对PCI接口的驱动程序。驱动程序可以选择不同的方法来完成,当然每个方法都有自己的特点,对几种主要设计驱动程序的方法作以比较之后,本文选择了使用DRIVER WORKS工具来完成。通过对配置空间的设计、系统端口和内存映射的设计、中断服务的设计等,用VC++语言编写了驱动程序。 最后,考虑到增加系统的实用性和完备性,还填加设计了图像的压缩部分。这部分需要完成的工作是在上述系统完成后,再额外地把采集来的视频数据通过另一路数据通道按照一定的格式压缩后存储到硬盘中。本系统中,这部分设计是利用Altera公司提供的IP核来完成压缩的,同时还用VHDL语言在FPGA上设计了IDE硬盘接口,使压缩后的数据存储到硬盘中。
上传时间: 2013-06-01
上传用户:程婴sky
在船舶交管系统中,雷达信息处理是最重要的组成部分。视频回波处理中的杂波处理要求实时性很高,大约要在一个距离单元的时间(0.05-0.1us)内完成。杂波处理如恒虚警处理本身比较复杂,这类处理过程又要求快速,图像显示系统要求及时的把接收到的雷达方位数据从极坐标转换成直角坐标。在软件上实现这些算法虽然精度可以达到,但是实时性问题不能满足。因此这类问题多采用高速专用数字设备来实现。FPGA在数字信号处理领域有非常广阔的应用前景,以其优良的性能在数字信号处理中发挥了重大的作用。CORDIC算法可以在硬件上以很高的精度实现一些函数和运算。针对以上几点,本文提出了利用CORDIC算法,基于FPGA来实现雷达信号处理和图像显示的算法研究,用硬件来实现正弦、余弦、正切、乘法、除法、指数和对数等基本函数和运算,把他们设计成为可重用的IP core,这样可以满足实时性和精度的问题。从而在将来的算法研究中方便的调用,这样在算法研究中可以节约大量的时间,在一定程度上降低研究的难度。 围绕雷达信号处理和图像显示,本次课题设计主要做了如下工作: 1.对CORDIC算法进行分析和研究,以及它在雷达信号处理和图像显示中的影响。 2.成功用硬件描述语言在Xilinx公司软件ISE的环境下编写代码,在Synplify和Modelsim上做了综合和仿真。 3.对实验结果进行精度和速度分析。 4.对雷达信号处理和图像显示的相关算法进行分析和研究。 5.从实例分析IP core的特点,对算法研究的影响和IP core在雷达信号处理和图像显示中的应用。 最终在实践环节,成功利用CORDIC算法,在FPGA上实现可重用的IP core,这些IP core能够以很高的精度实现一些基本函数和运算,在雷达信号处理与图像显示中起到很大的作用。
上传时间: 2013-07-16
上传用户:steele
心血管疾病是当今危害人类健康的主要疾病之一,心电图检查是临床上诊断心血管疾病的重要方法。心电图准确的自动分析与诊断对于心血管疾病的诊断起着关键的作用,也是国内外学者所热衷的研究课题。QRS复合波的检测是心电自动分析的关键环节,检出的位置精度关系到后续处理和分析的正确性和准确性。 本文在总结前人工作的基础上,对基于小波变换的QRS复合波检测算法做了深入研究;并针对小波变换算法与心电检测算法的结构提出了一种硬件实现方法。本文的主要内容包括基于小波变换的心电信号检测算法设计和该算法在FPGA系统上的实现两个部分。 对国内外近年内发展起来的各种心电检测方法进行了总结,并综合考虑检出率和硬件实现的实时性等问题,采用小波变换方法对QRS复合波进行检测。根据QRs复合波经小波变换后,心电特征波在某些尺度上对应有相对明显的模极值对,通过在对应尺度上判断模极值对,进而检测出对应的特征波。 设计了基于小波变换的心电信号检测算法的FPGA实现系统。系统主要包含三个模块:心电信号预处理模块、小波分解模块和检测模块。心电信号预处理模块对输入的心电信号进行滤波预处理,以消除工频干扰和基线漂移。小波分解模块采用流水线设计,即把各层小波分解分成各个模块独立实现,以提高运算效率。检测模块的功能是利用小波分解模块的输出结果在各尺度上寻找模极值对,并根据检测策略检测QRS复合波。 本文采用Veillog语言对设计进行了仿真验证,并通过MIT-BIH心律失常标准数据库对本文的设计实现进行性能评估,获得了较好的检出率。同时,综合结果也表明系统时钟能够工作在较高的频率,足以满足高速实时对心电信号的处理与检测。
上传时间: 2013-04-24
上传用户:daoxiang126
扩频通信是现代通信系统中的一种重要的通信方式,具有较强的抗干扰、抗多径性能以及频谱利用率高、多址通信等诸多优点,得到了广泛的应用。FPGA以其功能强大,开发过程投资少、周期短,可反复修改,保密性能好,开发工具智能化等特点成为当今硬件设计的重要方式。本文研究了直接序列扩频系统,重点研究了扩频部分和解扩部分,对扩频码的性能、匹配滤波器以及频差相差的估计和修正等关键技术进行了详细的分析和说明。在此基础上,运用VHDL语言进行了FPGA部分的功能实现,给出了一些相关的仿真及测试结果。最后对该系统还需进一步研究的问题进行了简要的介绍,对调试过程中的出现的一些问题进行了简单的分析和小结。
上传时间: 2013-05-26
上传用户:四只眼
在数字化、信息化的时代,数字集成电路应用得非常广泛。随着微电子技术和工艺的发展,数字集成电路从电子管、晶体管、中小规模集成电路、超大规模集成电路(VLSIC)逐步发展到今天的专用集成电路(ASIC)。但是ASIC因其设计周期长,改版投资大,灵活性差等缺陷制约着它的应用范围。可编程逻辑器件的出现弥补了ASIC的缺陷,使得设计的系统变得更加灵活,设计的电路体积更加小型化,重量更加轻型化,设计的成本更低,系统的功耗也更小了。FPGA是英文Field Programmable Gate Array的缩写,即现场可编程门阵列,它是在PAL、GAL、EPID等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。 本论文撰写的是用FPGA来实现无人小飞机系统中基带信号的处理过程。整个信号处理过程全部采用VHDL硬件描述语言来设计,并用Modelsim仿真系统功能进行调试,最后使用了Xilinx 公司可编程的FPGA芯片XC2S100完成,满足系统设计的要求。 本文首先研究和讨论了无线通信系统中基带信号处理的总体结构,接着详细阐述了各个模块的设计原理和方法,以及FPGA结果分析,最后就关键技术和难点作了详细的分析和研究。本文的最大特色是整个系统全部采用FPGA的方法来设计实现,修改灵活,体积小,功耗小。本系统的设计包括了数字锁相环、纠错编解码、码组交织、扰码加入、巴克码插入、帧同步识别、DPSK调制解调及选择了整体的时序,所有的组成部分都经过了反复地修改和调试,取得了良好的数据处理效果,其关键之处与难点都得到了妥善地解决。本文分别在发射部分(编码加调制)和接收部分(解调加解码)相独立和相联系的情况下,获得了仿真与实测结果。
上传时间: 2013-07-05
上传用户:acon