红外图像检测技术因具有非接触、快速等优点,被广泛应用于电力设备的监测与诊断 中,而对设备快速精确地检测定位是实现自动检测与诊断的前提。与普通目标的可见光图像相比, 电力设备的红外图像可能存在背景复杂、对比度低、目标特征相近、长宽比偏大等特征,采用原 始的 YOLOv3 模型难以精确定位到目标。针对此问题,该文对 YOLOv3 模型进行改进:在其骨干 网络中引入跨阶段局部模块;将路径聚合网络融合到原模型的特征金字塔结构中;加入马赛克 (Mosaic)数据增强技术和 Complete-IoU(CIoU)损失函数。将改进后的模型在四类具有相似波纹 外观结构的电力设备红外图像数据集上进行训练测试,每类的检测精度均能达到 92%以上。最后, 将该文方法的测试结果与其他三个主流目标检测模型进行对比评估。结果表明:不同阈值下,该 文提出的改进模型获得的平均精度均值优于 Faster R-CNN、SSD 和 YOLOv3 模型。改进后的 YOLOv3 模型尽管在检测速度上相比原 YOLOv3 模型有所牺牲,但仍明显高于其他两种模型。对 比结果进一步验证了所提模型的有效性。
上传时间: 2021-10-30
上传用户:
控制器局域网(CAN)为串行通讯协议,能有效地支持具有很高安全等级的分布实时控制。CAN 的应用范围很广,从高速的网络到低价位的多路接线都可以使用CAN。在汽车电子行业里,使用CAN 连接发动机控制单元、传感器、防刹车系统、等等,其传输速度可达1 Mbit/s。同时,可以将CAN 安装在卡车本体的电子控制系统里,诸如车灯组、电气车窗等等,用以代替接线配线装置。
上传时间: 2021-11-30
上传用户:xsr1983
神经网络在智能机器人导航系统中的应用研究1神经网络在环境感知中的应 用 对环境 的感 知 ,环境模型 妁表示 是非常重要 的。未 知 环境中的障碍物的几何形状是不确定的,常用的表示方浩是 槽格法。如果用册格法表示范围较大的工作环境,在满足 精度要求 的情况下,必定要占用大量的内存,并且采用栅 格法进行路径规划,其计算量是相当大的。Kohon~n自组织 神经瞬络为机器人对未知环境的蒜知提供了一条途径。 Kohone~冲经网络是一十自组织神经网络,其学习的结 果能体现出输入样本的分布情况,从而对输入样本实现数 据压缩 。基于 网络 的这些特 性,可采 用K0h0n曲 神经元 的 权向量来表示 自由空间,其方法是在 自由空间中随机地选 取坐标点xltl【可由传感器获得】作为网络输入,神经嘲络通 过对大量的输八样本的学习,其神经元就会体现出一定的 分布形 式 学习过程如下:开 始时网络的权值随机地赋值 , 其后接下式进行学 习: , 、 Jm(,)+叫f)f,)一珥ff)) ∈N,(f) (,) VfeN.(f1 其 中M(f1:神经元 1在t时刻对 应的权值 ;a(∽ 谓整系 数 ; (『l网络的输八矢量;Ⅳ():学习的 I域。每个神经元能最 大限度 地表示一 定 的自由空间 。神经 元权 向量的最 小生成 树可以表示出自由空问的基本框架。网络学习的邻域 (,) 可 以动 态地 定义 成矩形 、多边 形 。神经 元数量 的选取取 决 于环境 的复杂度 ,如果神 经元 的数量 太少 .它们就 不能 覆 盖整十空间,结果会导致节点穿过障碍物区域 如果节点 妁数量太大 .节点就会表示更多的区域,也就得不到距障 碍物的最大距离。在这种情况下,节点是对整个 自由空间 的学 习,而不是 学习最 小框架空 间 。节 点的数 量可 以动态 地定义,在每个学习阶段的结柬.机器人会检查所有的路 径.如检铡刊路径上有障碍物 ,就意味着没有足够的节点 来 覆盖整 十 自由窑 间,需要增加 网络节点来 重新学 习 所 138一 以为了收敛于最小框架表示 ,应该采用较少的网络 节点升 始学习,逐步增加其数量。这种方法比较适台对拥挤的'E{= 境的学习,自由空间教小,就可用线段表示;若自由空问 较大,就需要由二维结构表示 。 采用Kohonen~冲经阿络表示环境是一个新的方法。由 于网络的并行结构,可在较短的时间内进行大量的计算。并 且不需要了解障碍物的过细信息.如形状、位置等 通过 学习可用树结构表示自由空问的基本框架,起、终点问路 径 可利用树的遍 历技术报容易地被找到 在机器人对环境的感知的过程中,可采用人】:神经嘲 络技术对 多传 感器的信息进 行融台 。由于单个传感器仅能 提 供部分不 完全 的环境信息 ,因此只有秉 甩 多种传感器 才 能提高机器凡的感知能力。 2 神经 网络在局部路径规射中的应 用 局部路径 规删足称动吝避碰 规划 ,足以全局规荆为指 导 利用在线得到的局部环境信息,在尽可能短的时问内
上传时间: 2022-02-12
上传用户:qingfengchizhu
基于人工神经网络实现智能机器人的避障轨迹控制摘 要:利用人工神经网络中的二级 BP网。模拟智能机器人的两控制参数(左 、右轮速)间的函数关系。实现避 障轨迹为圆弧或椭圆弧的轨迹控制 。并且通过调整椭圆长、短轴大小。能实现多个及多层障碍物的避障控制.该方法 的突出特点是方法简单、算法容易实现 。使机器人完成多个及多层避障动作时。不滞后于动态环境里其它机器人(障 碍物)位置的变化.在仿真实验中。取得了理想的效果. 关键词;BP神经网络I多个及多层避障控制I椭圆轨迹1 弓I言(Introduction) 在机器人中,避障轨迹的生成是一个重要的问 题.对于不确定的动态环境下的实时避障轨迹生成, 是较为困难的.有关这方面的研究,目前已有许多方 法.一些神经网络模型被设计出来,产生实时的轨迹 生成.文献113[23提供的神经网络模型产生的轨迹 生成仅能处理在静态环境下及假设空间中没有障碍 物的情况.[3]提供的神经网络模型,能为智能机器 人产生导航的避障轨迹,然而模型在计算上相当复 杂.文献[43提供了Hopfield神经网络模型,能在动 态环境下产生时实的避障轨迹生成,并在文献[5] 中,严格证明了因该方法生成的轨迹没有遭受局部 极小点逃离问题.并且文献[63用两个神经网络层叠 加起来,每层构造相似于[43中的网络结构.它是利 用第二层网络来发现下一个机器人位置的无监督模 型,然而它却加倍了计算量,尽管文献[4,6]提供的 方法能在动态环境下,产生时实避障轨迹,但都具有 较慢的运动速度,在快速变化的环境下不能恰当地 完成动作执行,因为机器人要比较好地完成避障动 作,必须不能滞后于障碍物动作变化
上传时间: 2022-02-12
上传用户:得之我幸78
共建可信可管的互联网世界白皮书-华为物联网安全物联网(Internet of Things,简称 IoT)将海量的设备互联,使得网络更 加开放复杂,业务更加丰富多样。IoT 将带我们进入一个万物感知、万物互联、万物 智能的全新世界,然而同时,IoT 世界也面临巨大的安全挑战。 本文分析了 IoT 安全技术的发展现状, 提出了多重的端到端安全防御机制应作为应 对 IoT 安全威胁的有效保障,并进一步总结了 IoT 安全的实践供参考。目前 IoT 技术正在 飞速发展,新的安全问题和安全威胁依旧层出不穷,IoT 安全需要整个产业链的共建、共荣。 所以我们倡导 IoT 的安全需要政府、国际组织和行业来共同建设,在政策引导、法律颁 布、标准制定、技术创新和产业生态等方面加大投入,以促进 IoT 产业的健康发
上传时间: 2022-02-22
上传用户:fliang
华为敏捷园区解决方案终端安全技术白皮书(Forescout)1 用户准入检查,保证身份合法: 在用户访问网络访问之前验证用户的身份,只有合法的用户才允许接入网络。这就是 基于用户身份的准入机制,包括 802.1x,Portal,MAC bypass 这几种典型的认证方式。 准入检查由客户端+网络设备+AAA 服务器组成。在 Agile Campus 解决方案中,AAA 服务器可以使用自研的 Agile Controller-Campus 1.0,也可以与第三方 Server 对接,例 如 Cisco ISE 系统。 2 终端合规性检查,保证终端合规: 检查用户使用的终端是否符合企业制定的安全策略,例如防病毒和操作系统补丁策 略。可疑或有问题的主机将被隔离或限制网络接入范围,直到它经过修补或采取了相 应的安全措施为止。 终端合规检查由客户端+服务器组成,该系统可以独立部署。若需要将合规检查结果作 为 NAC 控制条件,AAA 系统必须与终端合规检查服务器实现联动。 在 Agile Campus 解决方案中,终端合规检查采用集成第三方厂家方式实现。 3 业务随行,保证用户业务一致性体验 基于安全组的策略规划,实现全网策略的统一部署与自动同步,确保全网策略一致, 让用户自由移动时享受一致的业务体验。 业务随行由网络设备+AAA 服务器+策略服务器组成。在 Agile Campus 解决方案中,若 客户希望同时部署终端合规检查和业务随行,需要部署 Agile Controller-Campus 1.0, 同时集成合规检查服务器。
标签: 华为敏捷园区
上传时间: 2022-02-28
上传用户:
摘要:无线传感器网络(Wireless Sensor Networks,wSN是由许多具有低功率无线收发装置的传感器节点组成,它们监测采集周边环境信息并传送到基站进行处理在某一时刻通过wSN采集的数据量非常大,如何正确、高效地处理这些数据成为当前WSN研究中的一个热点。传感器节点一般部署在恶劣环境中,一些偶然因素会使采集的数据中出现不准确的数据,用户依据这样的数据很难准确判断出被测对象的真实状态。基于模糊理论的决策级数据融合算法能够很好的解决这个问题本文以国家863研究项目《基于无线传感器网络的铁路危险货物在途安全状态监测技术研究》为背景,结合铁路运输中棉花在途状态监测系统的开发,在分析了当前有效的决策级数据融合技术基础上,提出了基于模糊理论的决策级数据融合算法,该算法通过对采集数据进行处理和分析,以获得准确的被测对象状态的描述。本文的主要工作包括:(1)分析了WSN中传统的决策级数据融合算法,如自适应加权数据融合算法和算术平均数数据融合算法,总结这两种算法的优缺点和检测系统的需求,进步明确理想算法应达到的目标。(2)提出了基于模糊理论的两阶段数据融合算法:该算法第一阶段利用基于贴近度的数据融合算法进行同类数据的融合校准,这一阶段的目的是剔除错误的和可信度较差的数据,得到相对更加准确的数据,第二阶段利用模糊推理对第个阶段得到的异类数据进行融合推理,得到被测对象当前状态的描述,为决策提供支持(3)结合实测数据仿真本文所提出的算法,结果证明与传统的融合算法相比,可以更加准确的描述被测对象状态
标签: 无线传感器
上传时间: 2022-03-17
上传用户:
第一章 机器学习革命学习算法入门为何商业拥护机器学习给科学方法增压10亿个比尔·克林顿学习算法与国家安全我们将走向何方第二章 终极算法来自神经科学的论证来自进化论的论证来自物理学的论证来自统计学的论证来自计算机科学的论证机器学习算法与知识工程师天鹅咬了机器人终极算法是狐狸,还是刺猬我们正面临什么危机新的万有理论未达标准的终极算法候选项机器学习的五大学派第三章 符号学派:休谟的归纳问题特别说明:仅作为爱好者学习使用(请勿商用)!本文档由人工智能吧(QQ群 565128329)整理提供并更多学习分享,若觉得不错请购买印刷版书籍。约不约“天下没有免费的午餐”定理对知识泵进行预设如何征服世界在无知与幻觉之间你能信任的准确度归纳是逆向的演绎掌握治愈癌症的方法20问游戏符号学派第四章 联结学派:大脑如何学习感知器的兴盛与衰亡物理学家用玻璃制作大脑世界上最重要的曲线攀登超空间里的高峰感知器的复仇一个完整的细胞模型大脑的更深处第五章 进化学派:自然的学习算法达尔文的算法探索:利用困境程序的适者生存法则性有何用先天与后天谁学得最快,谁就会赢第六章 贝叶斯学派:在贝叶斯教堂里统治世界的定理所有模型都是错的,但有些却有用从《尤金·奥涅金》到Siri所有东西都有关联,但不是直接关联推理问题掌握贝叶斯学派的方法马尔可夫权衡证据逻辑与概率:一对不幸的组合第七章 类推学派:像什么就是什么完美另一半维数灾难空中蛇灾爬上梯子起床啦第八章 无师自通物以类聚,人以群分发现数据的形状拥护享乐主义的机器人熟能生巧学会关联第九章 解开迷惑万里挑一终极算法之城马尔科夫逻辑网络从休谟到你的家用机器人行星尺度机器学习医生马上来看你第十章 建立在机器学习之上的世界性、谎言和机器学习数码镜子充满模型的社会分享与否?方式、地点如何?神经网络抢了我的工作战争不属于人类谷歌+终极算法=天网?进化的第二部分
上传时间: 2022-05-07
上传用户:
OpenCV 3是一种先进的计算机视觉库,可以用于各种图像和视频处理操作,通过OpenCV 3 能很容易地实现一些有前景且功能先进的应用(比如:人脸识别或目标跟踪等)。理解与计算机视觉相关的算法、模型以及OpenCV 3 API背后的基本概念,有助于开发现实世界中的各种应用程序(比如:安全和监视领域的工具)。本书将从图像处理的基本操作出发,带你开启先进计算机视觉概念的探索之旅。计算机视觉是一个快速发展的学科,在现实生活中,它的应用增长得非常快,因此写作本书的目的是为了帮助计算机视觉领域的新手和想要了解全新的OpenCV 3.0.0的计算机视觉专家。通过阅读本书,你将学到:安装和熟练使用基于Python的OpenCV 3的API掌握图像处理和视频分析的基础知识在图像和视频中检测和识别目标使用OpenCV检测和识别人脸训练和使用自己的对象分类器了解计算机视觉中的机器学习概念使用OpenCV的人工神经网络来解决实际问题开发现实生活中的计算机视觉应用
上传时间: 2022-05-14
上传用户:
ISO 26262《道路车辆功能安全》国际标准是针对总重不超过3.5吨八座乘用车,以安全相关电子电气系统的特点所制定的功能安全标准,基于IEC 61508《安全相关电气/电子/可编程电子系统功能安全》制定,在2011年11月15日正式发布。ISO 26262是史上第一个适用于大批量量产产品的功能安全(Functional Safety)标准。特别需要注意的是,ISO 26262仅针对安全相关电子电气系统,包含电机、电子与软件零件,不应用于非电子电气系统(如机械、液压等)。功能安全之设计议题在汽车领域已被重视,因其关系人员安全与公司商誉等问题,透过危害分析与风险评估(Hazard Analysis & Risk Assessment,HARA)及V模型设计架构,使功能安全需求等级得到一致性的分析结果,以利汽车电子系统之生命周期考虑到所需失效防止技术与管理要求,并借由设计开发、查证(Verification)及确认(Validation)等能力成熟度模型集成(CMMI-DEV)流程加以实现,使得产品之功能安全符合所需汽车安全完整性等级(ASIL)。
上传时间: 2022-05-30
上传用户: