该程序包实现了模式识别中的两个特征提取算法,主成分分析PCA和线性判别分析LDA。采用C++语言编写,开发环境VS。 程序包还提供了两个测试样本文件。
上传时间: 2014-01-05
上传用户:牛布牛
它是SourceForge上的一个开源项目,使用Malib实现实时处理,CSU Face Identification Evaluation System进行人脸识别。算法包括:主成份分析(principle components analysis (PCA)),a.k.a eigenfaces算法,混合主成份分析,线性判别分析(PCA+LDA),图像差分分类器(IIDC),弹性图像匹配算法(EBGM)等等 Malic is realtime face recognition system that based on Malib and CSU Face Identification Evaluation System (csuFaceIdEval). Uses Malib library for realtime image processing and some of csuFaceIdEval for face recognition.
标签: SourceForge 开源 项目
上传时间: 2014-01-21
上传用户:sz_hjbf
用matlab语言写的BDlDA算法,用于模式分类
上传时间: 2019-12-12
上传用户:romlee
内容提要第1章 机器学习概1.1 机器学习简介 1.1.1 机器学习简史 1.1.2 机器学习主要流派 1.2 机器学习、人工智1.2.1 什么是人工智能 1.2.2 什么是数据挖掘 1.2.3 机器学习、人工智1.3 典型机器学习应用1.4 机器学习算法 1.5 机器学习的一般流程 第2章 机器学习基本2.1 统计分析2.1.1 统计基础2.1.2 常见概率分布2.1.3 参数估计2.1.4 假设检验2.1.5 线性回归2.1.6 逻辑回归2.1.7 判别分析2.1.8 非线性模型2.2 高维数据降维2.2.1 主成分分析2.2.2 奇异值分解2.2.3 线性判别分析2.2.4 局部线性嵌入2.2.5 拉普拉斯特征映射2.3 特征工程 2.3.1 特征构建2.3.2 特征选择2.3.3 特征提取2.4 模型训练2.4.1 模型训练常见术语2.4.2 训练数据收集 2.5 可视化分析 2.5.1 可视化分析的作用2.5.2 可视化分析方法 2.5.3 可视化分析常用工2.5.4 常见的可视化图表 2.5.5 可视化分析面临的挑战
标签: 机器学习
上传时间: 2022-06-16
上传用户:
人脸特征是最自然直接的生物特征,它具有直接、友好、方便的特点,易于为用户接受。人脸识别由于其在监控、罪犯识别、人机交互等方面广泛潜在的应用,已成为图像处理、模式识别和计算机视觉等学科最活跃的研究领域。线性鉴别分析是特征抽取中最为经典和广泛使用的方法之一。近年来,在小样本情况下如何抽取Fisher最优鉴别特征一直是许多研究者关心的问题。文中阐述了应用Fisher 判别法在人脸图像样本分类方面的运用。在标准数据库ORL人脸库和Yale人脸数据库上仿真的试验结果证实了方法的有效性和稳定性。
上传时间: 2013-12-04
上传用户:qq527891923
独立主成分分析的工具箱,是模式识别,成分分析,线性判别的重要手段。
上传时间: 2013-12-16
上传用户:sjyy1001
本书共分6篇,第1篇统计学基础知识与SAS软件应用技巧,介绍了统计学的基本概念和学习方法、试验设计入门、统计描述、SAS软件应用入门、编写SAS实用程序的技巧、单变量统计分析和利用SAS/GRAPH模块绘制常用统计图的方法。第2篇试验设计与定量资料的统计分析,介绍了与t检验、非参数检验和各种方差分析有关的试验设计和数据处理方法。第3篇试验设计与定性资料的统计分析,介绍了处理二维及高维列联表资料的各种统计分析 方法,包括卡方检验、Fisher的精确检验、典型相关分析、logistic回归模型和对数线性模型等内容。第4篇试验设计与回归分析,介绍了回归分析的种类和选用方法、简单直线回归、多项式回归、简单曲线回归、多元线性回归、协方差分析、直接试验设计及其资料的回归分析等有关内容。第5篇生存分析,介绍了生存资料的特点、生存时间函数和生存分析 方法的分类等基本概念;生存资料的非参数分析方法、COX模型分析方法和参数模型的回归分析方法。第6篇多元统计分析,介绍了主成分分析、因子分析、对应分析、聚类分析、判别分析、典型相关分析。
标签: 分
上传时间: 2013-12-19
上传用户:zyt
Fisher判别,用于模式识别的Fisher线性判别
上传时间: 2015-04-18
上传用户:zukfu
该程序包实现了几个常用的模式识别分类器算法,包括K近邻分类器KNN、线性判别方程LDF分类器、二次判别方程QDF分类器、RDA规则判别分析分类器、MQDF改进二次判别方程分类器、SVM支持向量机分类器。 主程序中还有接口调用举例,压缩包中还有两个测试数据集文件。
上传时间: 2017-03-08
上传用户:aeiouetla
模式识别:线性分类器,fisher线性判别 female和male中分别为训练集 test1和test2为测试集
上传时间: 2017-07-15
上传用户:siguazgb