虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

移<b>相变</b>压器

  • 变频器维修手册大全

    变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变 频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然 还包括有限流电路、制动电路、控制电路等组成部分。 1)整流电路 如图所示,通用变频器的整流电路是由三相桥 式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻 网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最 大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。 2)滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电 动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。同时,三相整流桥输出 的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。通用变频器直流滤波电 路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随 的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 3)逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。如三菱公司 生产的IPMPM50RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正 电路、IGBT逆变模块及各种检测保护功能。模块的典型开关频率为20KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。逆变电路中都设置有续流电路。续流电路的功能是当频率下降时,异步电 动机的同步转速也随之下降。为异步电动机的再生电能反馈至直流电路提供通道。在逆变过程中,寄生电感释放能量提供通道。另外,当位于同一桥臂上的两个开 关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生 意外情况时,对换流器件进行保护 。

    标签: 变频器 维修手册

    上传时间: 2013-10-18

    上传用户:子虚乌有

  • 280W移相全桥软开关DC

    移相控制的全桥PWM变换器是最常用的中大功率DC/DC变换电路拓扑形式之一。移相PWM控制方式利用开关管的结电容和高频变压器的漏电感或原边串联电感作为谐振元件,使开关管能进行零电压开通和关断,从而有效地降低了电路的开关损耗和开关噪声,减少了器件开关过程中产生的电磁干扰,为变换器提高开关频率、提高效率、减小尺寸及减轻质量提供了良好的条件。然而,传统的移相全桥变换器的输出整流二极管存在反向恢复过程,会引起寄生振荡,二极管上存在很高的尖峰电压,需增加阻容吸收回路进行抑制,文献提出了两种带箝位二极管的拓扑,可以很好地抑制寄生振荡。本文采取文献提出的拓扑结构,设计了一台280 W移相全桥软开关DC/DC变换器,该变换器输入电压为194~310 V,输出电压为76V。

    标签: 280W 移相全桥 软开关

    上传时间: 2014-08-30

    上传用户:thing20

  • 基于UC3875全桥移相开关电源的设计

    文章阐述了零电压开关技术在移相全桥变换器中的应用, 提出了一种改进型的零电压零电流全桥移相开关电源, 对电路的工作原理、工作模式作了具体分析, 主要器件的参数选择作了设计, 并给出了由控制芯片UC3875 构成的3KW 实用高频开关电源。

    标签: 3875 UC 全桥移相 开关电源

    上传时间: 2013-11-18

    上传用户:zhanditian

  • 直流稳压电源的研究与设计

    一、实验目的         1. 学会选择变压器、整流二极管、滤波电容及集成稳             压 器来设计直流稳压电源。       2. 掌握直流稳压电源的主要性能参数及测试方法。 二、实验原理         电子设备一般都需要直流电源供电。这些直流电 除了少数直接利用干电池和直流发电机外,大多数是 采用把交流电(市电)转变为直流电的直流稳压电源。     直流稳压电源由电源变压器T、整流、滤波和稳压电路四部分组成,其原理框图如图1 所示。电网供给的交流电压u1(220V,50Hz) 经电源变压器降压后,得到符合电路需要的交流电压u2,然后由整流电路变换成方向不变、大小随时间变化的脉动电压u3,再用滤波器滤去其交流分量,就可得到比较平直的直流电压uI。但这样的直流输出电压,还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要使用稳压电路,以保证输出直流电压更加稳定。 1、串联型稳压电源的基本原理             图2是由分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路,它由调整元件(晶体管V1);比较放大器V2、R7;取样电路R1、R2、RP,基准电压VD、R3和过流保护电路V3管及电阻R4、R5、R6等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统,其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经T2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 2、集成稳压器      能够完成稳压功能的集成稳压器种类很多,根据调整管工作在线性放大区还是工作在开关状态,将其分为线性集成稳压器和开关集成稳压器。线性集成稳压器中,由于三端式稳压器只有三个引出端子,性能稳定、价格低廉等优点,因而得到广泛的应用。三端式稳压器有两种,一种输出电压是固定的,称为固定输出三端稳压器,另一种输出电压是可调的,称为可调三端稳压器。图 4是常用的三端稳压器示意图。

    标签: 直流稳压电源

    上传时间: 2013-11-27

    上传用户:qazxsw

  • 单片机指令系统原理

    单片机指令系统原理 51单片机的寻址方式 学习汇编程序设计,要先了解CPU的各种寻址法,才能有效的掌握各个命令的用途,寻址法是命令运算码找操作数的方法。在我们学习的8051单片机中,有6种寻址方法,下面我们将逐一进行分析。 立即寻址 在这种寻址方式中,指令多是双字节的,一般第一个字节是操作码,第二个字节是操作数。该操作数直接参与操作,所以又称立即数,有“#”号表示。立即数就是存放在程序存储器中的常数,换句话说就是操作数(立即数)是包含在指令字节中的。 例如:MOV  A,#3AH这条指令的指令代码为74H、3AH,是双字节指令,这条指令的功能是把立即数3AH送入累加器A中。MOV  DPTR,#8200H在前面学单片机的专用寄存器时,我们已学过,DPTR是一个16位的寄存器,它由DPH及DPL两个8位的寄存器组成。这条指令的意思就是把立即数的高8位(即82H)送入DPH寄存器,把立即数的低8位(即00H)送入DPL寄存器。这里也特别说明一下:在80C51单片机的指令系统中,仅有一条指令的操作数是16位的立即数,其功能是向地址指针DPTR传送16位的地址,即把立即数的高8位送入DPH,低8位送入DPL。 直接寻址 直接寻址方式是指在指令中操作数直接以单元地址的形式给出,也就是在这种寻址方式中,操作数项给出的是参加运算的操作数的地址,而不是操作数。例如:MOV  A,30H  这条指令中操作数就在30H单元中,也就是30H是操作数的地址,并非操作数。 在80C51单片机中,直接地址只能用来表示特殊功能寄存器、内部数据存储器以及位地址空间,具体的说就是:1、内部数据存储器RAM低128单元。在指令中是以直接单元地址形式给出。我们知道低128单元的地址是00H-7FH。在指令中直接以单元地址形式给出这句话的意思就是这0-127共128位的任何一位,例如0位是以00H这个单元地址形式给出、1位就是以01H单元地址给出、127位就是以7FH形式给出。2、位寻址区。20H-2FH地址单元。3、特殊功能寄存器。专用寄存器除以单元地址形式给出外,还可以以寄存器符号形式给出。例如下面我们分析的一条指令 MOV  IE,#85H 前面的学习我们已知道,中断允许寄存器IE的地址是80H,那么也就是这条指令可以以MOV  IE,#85H 的形式表述,也可以MOV  80H,#85H的形式表述。 关于数据存储器RAM的内部情况,请查看我们课程的第十二课。 直接寻址是唯一能访问特殊功能寄存器的寻址方式! 大家来分析下面几条指令:MOV  65H,A       ;将A的内容送入内部RAM的65H单元地址中MOV  A,direct    ;将直接地址单元的内容送入A中MOV  direct,direct;将直接地址单元的内容送直接地址单元MOV  IE,#85H      ;将立即数85H送入中断允许寄存器IE 前面我们已学过,数据前面加了“#”的,表示后面的数是立即数(如#85H,就表示85H就是一个立即数),数据前面没有加“#”号的,就表示后面的是一个地址地址(如,MOV 65H,A这条指令的65H就是一个单元地址)。 寄存器寻址 寄存器寻址的寻址范围是:1、4个工作寄存器组共有32个通用寄存器,但在指令中只能使用当前寄存器组(工作寄存器组的选择在前面专用寄存器的学习中,我们已知道,是由程序状态字PSW中的RS1和RS0来确定的),因此在使用前常需要通过对PSW中的RS1、RS0位的状态设置,来进行对当前工作寄存器组的选择。2、部份专用寄存器。例如,累加器A、通用寄存器B、地址寄存器DPTR和进位位CY。 寄存器寻址方式是指操作数在寄存器中,因此指定了寄存器名称就能得到操作数。例如:MOV A,R0这条指令的意思是把寄存器R0的内容传送到累加器A中,操作数就在R0中。INC R3这条指令的意思是把寄存器R3中的内容加1 从前面的学习中我产应可以理解到,其实寄存器寻址方式就是对由PSW程序状态字确定的工作寄存器组的R0-R7进行读/写操作。 寄存器间接寻址 寄存间接寻址方式是指寄存器中存放的是操作数的地址,即操作数是通过寄存器间接得到的,因此称为寄存器间接寻址。 MCS-51单片机规定工作寄存器的R0、R1做为间接寻址寄存器。用于寻址内部或外部数据存储器的256个单元。为什么会是256个单元呢?我们知道,R0或者R1都是一个8位的寄存器,所以它的寻址空间就是2的八次方=256。例:MOV  R0,#30H  ;将值30H加载到R0中    MOV  A,@R0    ;把内部RAM地址30H内的值放到累加器A中    MOVX A,@R0    ;把外部RAM地址30H内的值放到累加器A中 大家想想,如果用DPTR做为间址寄存器,那么它的寻址范围是多少呢?DPTR是一个16位的寄存器,所以它的寻址范围就是2的十六次方=65536=64K。因用DPTR做为间址寄存器的寻址空间是64K,所以访问片外数据存储器时,我们通常就用DPTR做为间址寄存器。例:MOV   DPTR,#1234H  ;将DPTR值设为1234H(16位)    MOVX  A,@DPTR      ;将外部RAM或I/O地址1234H内的值放到累加器A中 在执行PUSH(压栈)和POP(出栈)指令时,采用堆栈指针SP作寄存器间接寻址。例:PUSH  30H    ;把内部RAM地址30H内的值放到堆栈区中堆栈区是由SP寄存器指定的,如果执行上面这条命令前,SP为60H,命令执行后会把内部RAM地址30H内的值放到RAM的61H内。 那么做为寄存器间接寻址用的寄存器主要有哪些呢?我们前面提到的有四个,R0、R1、DPTR、SP 寄存器间接寻址范围总结:1、内部RAM低128单元。对内部RAM低128单元的间接寻址,应使用R0或R1作间址寄存器,其通用形式为@Ri(i=0或1)。 2、外部RAM 64KB。对外部RAM64KB的间接寻址,应使用@DPTR作间址寻址寄存器,其形式为:@DPTR。例如MOVX A,@DPTR;其功能是把DPTR指定的外部RAM的单元的内容送入累加器A中。外部RAM的低256单元是一个特殊的寻址区,除可以用DPTR作间址寄存器寻址外,还可以用R0或R1作间址寄存器寻址。例如MOVX  A,@R0;这条指令的意思是,把R0指定的外部RAM单元的内容送入累加器A。 堆栈操作指令(PUSH和POP)也应算作是寄存器间接寻址,即以堆栈指针SP作间址寄存器的间接寻址方式。 寄存器间接寻址方式不可以访问特殊功能寄存器!! 寄存器间接寻址也须以寄存器符号的形式表示,为了区别寄存器寻址我寄存器间接寻址的区别,在寄存器间接寻址方式式中,寄存器的名称前面加前缀标志“@”。 基址寄存器加变址寄存器的变址寻址 这种寻址方式以程序计数器PC或DPTR为基址寄存器,累加器A为变址寄存器,变址寻址时,把两者的内容相加,所得到的结果作为操作数的地址。这种方式常用于访问程序存储器ROM中的数据表格,即查表操作。变址寻址只能读出程序内存入的值,而不能写入,也就是说变址寻址这种方式只能对程序存储器进行寻址,或者说它是专门针对程序存储器的寻址方式。例:MOVC  A,@A+DPTR这条指令的功能是把DPTR和A的内容相加,再把所得到的程序存储器地址单元的内容送A假若指令执行前A=54H,DPTR=3F21H,则这条指令变址寻址形成的操作数地址就是54H+3F21H=3F75H。如果3F75H单元中的内容是7FH,则执行这条指令后,累加器A中的内容就是7FH。 变址寻址的指令只有三条,分别如下:JMP    @A+DPTRMOVC   A,@A+DPTRMOVC   A,@A+PC 第一条指令JMP @A+DPTR这是一条无条件转移指令,这条指令的意思就是DPTR加上累加器A的内容做为一个16位的地址,执行JMP这条指令是,程序就转移到A+DPTR指定的地址去执行。 第二、三条指令MOVC   A,@A+DPTR和MOVC   A,@A+PC指令这两条指令的通常用于查表操作,功能完全一样,但使用起来却有一定的差别,现详细说明如下。我们知道,PC是程序指针,是十六位的。DPTR是一个16位的数据指针寄存器,按理,它们的寻址范围都应是64K。我们在学习特殊功能寄存器时已知道,程序计数器PC是始终跟踪着程序的执行的。也就是说,PC的值是随程序的执行情况自动改变的,我们不可以随便的给PC赋值。而DPTR是一个数据指针,我们就可以给空上数据指针DPTR进行赋值。我们再看指令MOVC   A,@A+PC这条指令的意思是将PC的值与累加器A的值相加作为一个地址,而PC是固定的,累加器A是一个8位的寄存器,它的寻址范围是256个地址单元。讲到这里,大家应可明白,MOVC   A,@A+PC这条指令的寻址范围其实就是只能在当前指令下256个地址单元。所在,这在我们实际应用中,可能就会有一个问题,如果我们需要查询的数据表在256个地址单元之内,则可以用MOVC   A,@A+PC这条指令进行查表操作,如果超过了256个单元,则不能用这条指令进行查表操作。刚才我们已说到,DPTR是一个数据指针,这个数据指针我们可以给它赋值操作的。通过赋值操作。我们可以使MOVC   A,@A+DPTR这条指令的寻址范围达到64K。这就是这两条指令在实际应用当中要注意的问题。 变址寻址方式是MCS-51单片机所独有的一种寻址方式。 位寻址 80C51单片机有位处理功能,可以对数据位进行操作,因此就有相应的位寻址方式。所谓位寻址,就是对内部RAM或可位寻址的特殊功能寄存器SFR内的某个位,直接加以置位为1或复位为0。 位寻址的范围,也就是哪些部份可以进行位寻址: 1、我们在第十二课学习51单片机的存储器结构时,我们已知道在单片机的内部数据存储器RAM的低128单元中有一个区域叫位寻址区。它的单元地址是20H-2FH。共有16个单元,一个单元是8位,所以位寻址区共有128位。这128位都单独有一个位地址,其位地址的名字就是00H-7FH。这里就有一个比较麻烦的问题需要大家理解清楚了。我们在前面的学习中00H、01H。。。。7FH等等,所表示的都是一个字节(或者叫单元地址),而在这里,这些数据都变成了位地址。我们在指令中,或者在程序中如何来区分它是一个单元地址还是一个位地址呢?这个问题,也就是我们现在正在研究的位寻址的一个重要问题。其实,区分这些数据是位地址还是单元地址,我们都有相应的指令形式的。这个问题我们在后面的指令系统学习中再加以论述。 2、对专用寄存器位寻址。这里要说明一下,不是所有的专用寄存器都可以位寻址的。具体哪些专用寄存器可以哪些专用寄存器不可以,请大家回头去看看我们前面关于专用寄存器的相关文章。一般来说,地址单元可以被8整除的专用寄存器,通常都可以进行位寻址,当然并不是全部,大家在应用当中应引起注意。 专用寄存器的位寻址表示方法: 下面我们以程序状态字PSW来进行说明 D7 D6 D5 D4 D3 D2 D1 D0 CY   AC  F0  RS1  RS0  OV    P  1、直接使用位地址表示:看上表,PSW的第五位地址是D5,所以可以表示为D5H   MOV  C,D5H 2、位名称表示:表示该位的名称,例如PSW的位5是F0,所以可以用F0表示   MOV  C,F0 3、单元(字节)地址加位表示:D0H单元位5,表示为DOH.5    MOV  C,D0H.5 4、专用寄存器符号加位表示:例如PSW.5    MOV C,PSW.5 这四种方法实现的功能都是相同的,只是表述的方式不同而已。 例题:   1. 说明下列指令中源操作数采用的寻址方式。   MOV R5,R7 答案:寄存器寻址方式   MOV A,55H 直接寻址方式   MOV A,#55H 立即寻址方式   JMP @A+DPTR 变址寻址方式   MOV 30H,C 位寻址方式   MOV A,@R0 间接寻址方式   MOVX A,@R0 间接寻址方式 改错题   请判断下列的MCS-51单片机指令的书写格式是否有错,若有,请说明错误原因。   MOV R0,@R3 答案:间址寄存器不能使用R2~R7。   MOVC A,@R0+DPTR 变址寻址方式中的间址寄存器不可使用R0,只可使用A。   ADD R0,R1 运算指令中目的操作数必须为累加器A,不可为R0。   MUL AR0 乘法指令中的乘数应在B寄存器中,即乘法指令只可使用AB寄存器组合。

    标签: 单片机指令 系统原理

    上传时间: 2013-11-11

    上传用户:caozhizhi

  • 12345

    /****************temic*********t5557***********************************/    #include   <at892051.h>     #include   <string.h>    #include   <intrins.h>     #include   <stdio.h>     #define    uchar    unsigned char     #define    uint     unsigned int     #define    ulong    unsigned long     //STC12C2051AD的SFR定义     sfr  WDT_CONTR = 0xe1;//stc2051的看门狗??????     /**********全局常量************/    //写卡的命令     #define    write_command0       0//写密码     #define    write_command1       1//写配置字     #define    write_command2       2//密码写数据     #define    write_command3       3//唤醒     #define    write_command4       4//停止命令     #define    TRUE       1     #define    FALSE      0     #define    OK         0     #define    ERROR      255     //读卡的时间参数us     #define ts_min          250//270*11.0592/12=249//取近似的整数     #define ts_max          304//330*11.0592/12=304     #define t1_min          73//90*11.0592/12=83:-10调整     #define t1_max          156//180*11.0592/12=166     #define t2_min          184//210*11.0592/12=194     #define t2_max          267//300*11.0592/12=276     //***********不采用中断处理:采用查询的方法读卡时关所有中断****************/     sbit p_U2270B_Standby = P3^5;//p_U2270B_Standby PIN=13     sbit p_U2270B_CFE = P3^3;//p_U2270B_CFE     PIN=6     sbit p_U2270B_OutPut = P3^7;//p_U2270B_OutPut  PIN=2     sbit wtd_sck = P1^7;//SPI总线     sbit wtd_si = P1^3;    sbit wtd_so = P1^2;    sbit iic_data = P1^2;//lcd IIC     sbit iic_clk = P1^7;    sbit led_light = P1^6;//测试绿灯     sbit led_light1 = P1^5;//测试红灯     sbit led_light_ok  = P1^1;//读卡成功标志     sbit fengmingqi = P1^5;    /***********全局变量************************************/       uchar data Nkey_a[4] = {0xA0, 0xA1, 0xA2, 0xA3};//初始密码             //uchar idata card_snr[4];   //配置字     uchar data bankdata[28] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7};     //存储卡上用户数据(1-7)7*4=28     uchar data cominceptbuff[6] = {1,2,3,4,5,6};//串口接收数组ram     uchar command; //第一个命令     uchar command1;//     //uint  temp;     uchar j,i;    uchar myaddr = 8;    //uchar ywqz_count,time_count;             //ywqz jishu:     uchar bdata DATA;    sbit BIT0 = DATA^0;    sbit BIT1 = DATA^1;    sbit BIT2 = DATA^2;    sbit BIT3 = DATA^3;    sbit BIT4 = DATA^4;    sbit BIT5 = DATA^5;    sbit BIT6 = DATA^6;    sbit BIT7 = DATA^7;    uchar bdata DATA1;    sbit BIT10 = DATA1^0;    sbit BIT11 = DATA1^1;    sbit BIT12 = DATA1^2;    sbit BIT13 = DATA1^3;    sbit BIT14 = DATA1^4;    sbit BIT15 = DATA1^5;    sbit BIT16 = DATA1^6;    sbit BIT17 = DATA1^7;    bit i_CurrentLevel;//i_CurrentLevel  BIT 00H(Saves current level of OutPut pin of U2270B)     bit timer1_end;    bit read_ok = 0;    //缓存定时值,因用同一个定时器     union HLint { uint W;    struct   {    uchar H;uchar L;   }   B; };//union HLint idata a     union HLint data a;    //缓存定时值,因用同一个定时器     union HLint0 { uint W;    struct {   uchar H;   uchar L; } B; };//union HLint idata a     union HLint0 data b;    /**********************函数原型*****************/    //读写操作     void f_readcard(void);//全部读出1~7 AOR唤醒     void f_writecard(uchar x);//根据命令写不同的内容和操作     void f_clearpassword(void);//清除密码     void f_changepassword(void);//修改密码     //功能子函数     void write_password(uchar data *data p);//写初始密码或数据     void write_block(uchar x,uchar data *data p);//不能用通用指针     void write_bit(bit x);//写位     /*子函数区*****************************************************/    void delay_2(uint x)    //延时,时间x*10us@12mhz,最小20us@12mhz     {    x--; x--;    while(x)    {      _nop_();      _nop_();      x--;    }    _nop_();//WDT_CONTR=0X3C;不能频繁的复位     _nop_();    }    /////////////////////////////////////////////////////////////////////     void initial(void)    {    SCON = 0x50; //串口方式1,允许接收     //SCON  =0x50;     //01010000B:10位异步收发,波特率可变,SM2=0不用接收到有效停止位才RI=1,     //REN=1允许接收     TMOD = 0x21; //定时器1 定时方式2(8位),定时器0 定时方式1(16位)     TCON = 0x40; //设定时器1 允许开始计时(IT1=1)     TH1 = 0xfD;  //FB 18.432MHz 9600 波特率     TL1 = 0xfD;  //fd 11.0592 9600     IE = 0X90;     //EA=ES=1     TR1 = 1;     //启动定时器     WDT_CONTR = 0x3c;//使能看门狗     p_U2270B_Standby = 0;//单电源     PCON = 0x00;    IP = 0x10;//uart you xian XXXPS PT1 PX1 PT0 PX0     led_light1 = 1;    led_light = 0;    p_U2270B_OutPut = 1;    }    /************************************************/    void f_readcard()//读卡     {    EA = 0;//全关,防止影响跳变的定时器计时     WDT_CONTR = 0X3C;//喂狗     p_U2270B_CFE = 1;//      delay_2(232);  //>2.5ms            /*   //   aor    用唤醒功能来防碰撞   p_U2270B_CFE = 0; delay_2(18);//start gap>150us   write_bit(1);//10=操作码读0页   write_bit(0);       write_password(&bankdata[24]);//密码block7   p_U2270B_CFE =1 ;//    delay_2(516);//编程及确认时间5.6ms   */    WDT_CONTR = 0X3C;//喂狗     led_light = 0;    b.W = 0;    while(!(read_ok == 1))    {             //while(p_U2270B_OutPut);//等一个稳定的低电平?超时判断?              while(!p_U2270B_OutPut);//等待上升沿的到来同步信号检测1       TR0 = 1;      //deng xia jiang       while(p_U2270B_OutPut);//等待下降沿       TR0 = 0;   a.B.H = TH0;   a.B.L = TL0;   TH0 = TL0 = 0;   TR0 = 1;//定时器晚启动10个周期       //同步头       if((324 < a.W) && (a.W < 353)) ;//检测同步信号1                  else     {     TR0 = 0;     TH0 = TL0 = 0;     goto read_error;    }      //等待上升沿        while(!p_U2270B_OutPut);   TR0 = 0;   a.B.H = TH0;   a.B.L = TL0;   TH0 = TL0 = 0;   TR0 = 1;//b.N1<<=8;            if(a.B.L < 195);//0.5p       else     {     TR0 = 0;     TH0 = TL0 = 0;     goto read_error;    }      //读0~7块的数据       for(j = 0;j < 28;j++)      {       //uchar i;                  for(i = 0;i < 16;i++)//8个位        {        //等待下降沿的到来         while(p_U2270B_OutPut);                TR0 = 0;     a.B.H = TH0;     a.B.L = TL0;     TH0 = TL0 = 0;     TR0 = 1;              if(t2_max < a.W/*)&&(a.W < t2_max)*/)//1P          {         b.W >>= 2;//先左移再赋值          b.B.L += 0xc0;                             i++;        }        else if(t1_min < a.B.L/*)&&(a.B.L < t1_max)*/)//0.5p         {         b.W >>= 1;         b.B.L += 0x80;                           }        else      {      TR0 = 0;      TH0 = TL0 = 0;      goto read_error;     }        i++;        while(!p_U2270B_OutPut);//上升                   TR0 = 0;     a.B.H = TH0;     a.B.L = TL0;     TH0 = TL0 = 0;     TR0 = 1;                      if(t2_min < a.W/*)&&(a.W < t2_max)*/)//1P          {         b.W >>= 2;         i++;        }        else if(t1_min < a.B.L/*a.W)&&(a.B.L < t1_max)*/)//0.5P         //else if(!(a.W==0))         {         b.W >>= 1;         //temp+=0x00;          //led_light1=0;led_light=1;delay_2(40000);         }        else      {      TR0 = 0;      TH0 = TL0 = 0;      goto read_error;     }        i++;       }       //取出奇位        DATA = b.B.L;       BIT13 = BIT7;    BIT12 = BIT5;    BIT11 = BIT3;    BIT10 = BIT1;       DATA = b.B.H;       BIT17 = BIT7;    BIT16 = BIT5;    BIT15 = BIT3;    BIT14 = BIT1;       bankdata[j] = DATA1;      }              read_ok = 1;//读卡完成了     read_error:    _nop_();    }       }    /***************************************************/    void f_writecard(uchar x)//写卡     {    p_U2270B_CFE = 1;    delay_2(232);  //>2.5ms            //psw=0 standard write     if (x == write_command0)//写密码:初始化密码     {      uchar i;      uchar data *data p;      p = cominceptbuff;      p_U2270B_CFE = 0;   delay_2(31);//start gap>330us       write_bit(1);//写操作码1:10       write_bit(0);//写操作码0       write_bit(0);//写锁定位0       for(i = 0;i < 35;i++)      {       write_bit(1);//写数据位1       }      p_U2270B_CFE = 1;      led_light1 = 0;   led_light = 1;   delay_2(40000);//测试使用       //write_block(cominceptbuff[4],p);       p_U2270B_CFE = 1;      bankdata[20] = cominceptbuff[0];//密码存入       bankdata[21] = cominceptbuff[1];      bankdata[22] = cominceptbuff[2];      bankdata[23] = cominceptbuff[3];    }    else if (x == write_command1)//配置卡参数:初始化     {      uchar data *data p;      p = cominceptbuff;      write_bit(1);//写操作码1:10       write_bit(0);//写操作码0       write_bit(0);//写锁定位0               write_block(cominceptbuff[4],p);      p_U2270B_CFE=  1;    }    //psw=1  pssword mode     else if(x == write_command2)  //密码写数据    {      uchar data*data p;      p = &bankdata[24];      write_bit(1);//写操作码1:10       write_bit(0);//写操作码0       write_password(p);//发口令       write_bit(0);//写锁定位0       p = cominceptbuff;      write_block(cominceptbuff[4],p);//写数据            }    else if(x == write_command3)//aor    //唤醒 {      //cominceptbuff[1]操作码10 X xxxxxB       uchar data *data p;      p = cominceptbuff;      write_bit(1);//10       write_bit(0);             write_password(p);//密码       p_U2270B_CFE = 1;//此时数据不停的循环传出     }    else //停止操作码     {      write_bit(1);//11       write_bit(1);             p_U2270B_CFE = 1;         }    p_U2270B_CFE = 1;    delay_2(560);//5.6ms     }    /************************************/    void f_clearpassword()//清除密码     {    uchar data *data p;    uchar i,x;          p = &bankdata[24];//原密码     p_U2270B_CFE = 0; delay_2(18);//start gap>150us     //操作码10:10xxxxxxB     write_bit(1);    write_bit(0);              for(x = 0;x < 4;x++)//发原密码     {             DATA = *(p++);      for(i = 0;i < 8;i++)      {       write_bit(BIT0);       DATA >>= 1;      }    }    write_bit(0);//锁定位0:0     p = &cominceptbuff[0];    write_block(0x00,p);//写新配置参数:pwd=0             //密码无效:即清除密码     DATA = 0x00;//停止操作码00000000B     for(i = 0;i < 2;i++)    {    write_bit(BIT7);    DATA <<= 1;    }    p_U2270B_CFE = 1;       delay_2(560);//5.6ms     }    /*********************************/    void f_changepassword()//修改密码            {       uchar data *data p;    uchar i,x,addr;    addr = 0x07;//block7     p = &Nkey_a[0];//原密码     DATA = 0x80;//操作码10:10xxxxxxB     for(i = 0;i < 2;i++)    {      write_bit(BIT7);      DATA <<= 1;    }    for(x = 0;x < 4;x++)//发原密码     {             DATA = *(p++);      for(i = 0;i < 8;i++)      {       write_bit(BIT7);       DATA >>= 1;      }    }    write_bit(0);//锁定位0:0     p = &cominceptbuff[0];    write_block(0x07,p);//写新密码     p_U2270B_CFE = 1;    bankdata[24] = cominceptbuff[0];//密码存入     bankdata[25] = cominceptbuff[1];    bankdata[26] = cominceptbuff[2];    bankdata[27] = cominceptbuff[3];    DATA = 0x00;//停止操作码00000000B     for(i = 0;i < 2;i++)    {      write_bit(BIT7);      DATA <<= 1;    }    p_U2270B_CFE = 1;       delay_2(560);//5.6ms     }    /***************************子函数***********************************/    void write_bit(bit x)//写一位     {    if(x)    {      p_U2270B_CFE = 1;   delay_2(32);//448*11.0592/120=42延时448us       p_U2270B_CFE = 0;   delay_2(28);//280*11.0592/120=26写1     }    else    {      p_U2270B_CFE = 1;   delay_2(92);//192*11.0592/120=18       p_U2270B_CFE = 0;   delay_2(28);//280*11.0592/120=26写0     }    }    /*******************写一个block*******************/    void write_block(uchar addr,uchar data *data p)    {    uchar i,j;        for(i = 0;i < 4;i++)//block0数据     {             DATA = *(p++);      for(j = 0;j < 8;j++)      {       write_bit(BIT0);       DATA >>= 1;      }    }    DATA = addr <<= 5;//0地址     for(i = 0;i < 3;i++)    {      write_bit(BIT7);      DATA <<= 1;    }                   }    /*************************************************/    void write_password(uchar data *data p)    {    uchar i,j;        for(i = 0;i < 4;i++)//     {             DATA = *(p++);      for(j = 0;j < 8;j++)      {       write_bit(BIT0);       DATA >>= 1;      }    }        }   /*************************************************/   void main()    {    initial();    TI = RI = 0;    ES = 1;    EA = 1;  delay_2(28);   //f_readcard();     while(1) {   f_readcard();      //读卡   f_writecard(command1);  //写卡    f_clearpassword();   //清除密码     f_changepassword();    //修改密码 } }

    标签: 12345

    上传时间: 2017-10-20

    上传用户:my_lcs

  • AD9854中文资料

    ·300M内部时钟频率 ·可进行频移键控(FSK),二元相移键控(BPSK),相移键控(PSK),脉冲调频(CHIRP),振幅调制(AM)操作 ·正交的双通道12位D/A转换器 ·超高速比较器,3皮秒有效抖动偏差 ·外部动态特性: 80 dB无杂散动态范围(SFDR)@ 100 MHz (±1 MHz) AOUT ·4倍到20倍可编程基准时钟乘法器 ·两个48位可编程频率寄存器 ·两个14位可编程相位补偿寄存器 ·12位振幅调制和可编程的通断整形键控功能 ·单引脚FSK和BPSK数据输入接口 ·PSK功能可由I/O接口实现 ·具有线性和非线性的脉冲调频(FM CHIRP)功能,带有引脚可控暂停功能 ·具有过渡FSK功能 ·在时钟发生器模式下,有小于25 ps RMS抖动偏差 ·可自动进行双向频率扫描 ·能够对信号进行sin(x)/x校正 ·简易的控制接口:  可配置为10MHZ串行接口,2线或3线SPI兼容接口或100MHZ 8位并行可编程接口 ·3.3V单电源供电 ·具有多路低功耗功能 ·单输入或差分输入时钟 ·小型80脚LQFP 封装

    标签: 9854 AD

    上传时间: 2019-08-06

    上传用户:fuxy

  • 永嘉微电优势出货ht16c21RAM映射20×416×8LCD驱动控制器

    永嘉微电科技优势产品——高抗干扰LCD驱动IC系列(HT16C21、HT16C22、HT16C23、HT16C24)   产品型号:HT16C21           产品品牌:HOLTEK/合泰 产品年份:新年份          封装形式:NSOP16/SOP20/SOP24/SOP28     工程技术服务支持,价格具有优势! 概述 HT16C21 是一款存储器映射和多功能 LCD 控制 / 驱动芯片。该芯片显示模式有 80 点 (20×4) 或 128 点 (16×8)。HT16C21 的软件配置特性使得它 适用于多种 LCD 应用,包括 LCD 模块和显示子 系统。HT16C21 通过双线双向 I2C 接口与大多数 微处理器 / 微控制器进行通信。 HT16C2X系列为I2C介面、RAM mapping的LCD控制暨驱动IC,此系列以先进设计技术降低IC耗电、提升抗杂讯及ESD防护能力。全系列包含HT16C22/HT16C22G、HT16C23/HT16C23G、HT16C24/HT16C24G等。HT16C22已成功获得单相电表客戶的认可及采用,HT16C23及HT16C24适合于点数需求较大的三相电表的应用。 此系列內建显示记忆体及RC振荡电路;工作电压范围:2.4V~5.5V;提供2种图框扫描频率:80Hz or 160Hz;可由外挂电阻调整VLCD电压,也提供內建可由指令调整16阶的VLCD电压;提供全屏闪烁功能、有三种频率可选。透过I2C介面及多項內置电路,HT16C2X系列与系统控制晶片的传输只需2根信号线,大大省去系统零件及布线、降低客戶系统成本。 特性 -工作电压:2.4 ~ 5.5V -内部 32kHz RC 振荡器 -Bias:1/3 或 1/4;Duty:1/4 或 1/8 -带电压跟随器的内部 LCD 偏置发生器 -I2C 接口 -两个可选 LCD 帧频率:80Hz 或 160Hz -多达 16×8 位 RAM 用来存储显示数据 -显示模式: 20×4 模式:20 SEGs 和 4 COMs 16×8 模式:16 SEGs 和 8 COMs -多种闪烁模式 -读 / 写地址自动增加 -内建 16 级 VLCD 电压调整电路 -低功耗 -提供 VLCD 引脚用来调整 LCD 工作电压 -采用硅栅极 CMOS 制造工艺 -封装类型:20/24/28 SOP, 16 NSOP 此篇产品叙述为功能简介,如需要完整产品PDF资料可以联系许先生索取! HT16C21适用于高抗噪声的小点数LCD应用 HT16C21是采用I2C接口的通用型LCD控制暨驱动器,可选用4 Common或8 Common的驱动模式,最多可显示128点;本产品采用低耗电设计、在3V工作时只有18uA耗电流。高整合性脚位设计:比竞争者封装脚数更少、可显示点数更多;与系统控制芯片的传输只需2根信号线、外挂零件少、可降低客户系统成本。 HT16C21内建有128Bit显示内存,可降低主控MCU的负担;工作电压宽广:2.4V~5.5V;提供2种图框扫瞄频率;内建调整电路可以指令设定16阶VLCD电压;提供全屏闪烁功能、有三种频率可选。更大可显示点数为4 COM x 20 SEG或8 COM x 16 SEG。 HT16C2x系列具备低耗电、高抗噪声及高ESD防护能力。全系列包含HT16C21、HT16C22/HT16C22G、HT16C23/HT16C23G、HT16C24/HT16C24G等。HT16C22已成功获得大陆、美国地区单相电表客户的认可及采用,HT16C23及HT16C24适合于点数需求较大的三相电表的应用。 HT16C21适用于家电、民生消费品、工业仪表、水表、农网表、瓦斯表等之应用。HT16C21提供28/24/20SOP及16NSOP封装,依封装不同、点数略有差异,有关点数及封装的选用。 -------------------------------------------------------- 产品型号:HT16C22          产品品牌:HOLTEK/合泰 产品年份:新年份              封装形式:LQFP48/LQFP52 工程技术服务支持,价格具有优势! 概述 HT16C22/HT16C22G 是一款存储器映射和多功能 LCD 控制 / 驱动芯片。该系列芯片显示模式有 176 点 (44×4)。HT16C22/HT16C22G 软件配置特性使 得它适用于多种 LCD 应用,包括 LCD 模块和显示子系统。HT16C22/HT16C22G 通过双线双向 I2C 接口与大多数微处理器 / 微控制器进行通信。 HT16C2X系列为I2C介面、RAM mapping的LCD控制暨驱动IC,此系列以先进设计技术降低IC耗电、提升抗杂讯及ESD防护能力。全系列包含HT16C22/HT16C22G、HT16C23/HT16C23G、HT16C24/HT16C24G等。HT16C22已成功获得单相电表客戶的认可及采用,HT16C23及HT16C24适合于点数需求较大的三相电表的应用。 特性 -工作电压:2.4V ~ 5.5V -内部 32kHz RC 振荡器 -Bias:1/2 或 1/3;Duty:1/4 -带电压跟随器的内部 LCD 偏置发生器 -I2C接口 -两个可选 LCD 帧频率:80Hz 或 160Hz -多达 44×4 位 RAM 用来存储显示数据 -更大显示模式 44×4:44 SEGs 和 4 COMs -多种闪烁模式 -读 / 写地址自动增加 -内建 16 级 VLCD 电压调整电路 -低功耗 -提供 VLCD 引脚来调整 LCD 工作电压 -采用硅栅极 CMOS 制造工艺 -封装类型:48LQFP,52QFP 此篇产品叙述为功能简介,如需要完整产品PDF资料可以联系许先生索取! LCD驱动IC推出HT16C22新I2C接口系列 本公司专注于TN/STN LCD的中小尺寸应用,HT162X系列控制暨驱动IC已营销业界多年。2010年盛群更展开I2C标准接口系列的新产品开发,此系列包含HT16C22、HT16C23、HT16C24、HT16K23等。IC特性强调低功耗、高抗噪声及高系统ESD防护能力,以高整合度的脚位包装,提供客户更大的显示点数。HT16C22是首先开发完成的型号,HT16C23、HT16C24及HT16K23会陆续推出。 HT16C22内建显示内存及RC振荡电路;工作电压宽广:2.4V~5.5V;2种Bias分压:1/2 & 1/3;更大显示点数可支持4 Common x 44 Segment(52QFP)。提供2种图框扫瞄频率:80Hzor 160Hz;可由外挂电阻调整VLCD电压,也提供16阶可由内建指令调整的VLCD电压。透过I2C接口及多项内置电路,HT16C22与系统控制芯片的传输只需2根信号线,大大省去系统零件及布线、降低客户系统成本。与其它同包装的产品,HT16C22提供更多的显示点数。 HT16C22适用于家电、车载、民生消费品、工业仪表等的LCD显示器的控制及驱动,高抗噪声及高ESD防护能力尤适合数字式LCD电表、水表、瓦斯表等。依包装不同尚有2种点数可选择:4 Common x 40 Segment(48 LQFP)及4 Common x 36 Segment(44QFP)。 -------------------------------------------------------- 产品型号:HT16C23              产品品牌:HOLTEK/合泰 产品年份:新年份                  封装形式:LQFP64/LQFP48   工程技术服务支持,价格具有优势! HT16C23/HT16C23G -- RAM Mapping 56*4 / 52*8LCD Driver Controller 概述 HT16C23/HT16C23G 是一款存储器映射和多功能 的 LCD 控制 / 驱动芯片。该芯片的显示字段为 224 点 (56 SEG × 4COM) 或 416 点 (52 SEG × 8 COM)。HT16C23/HT16C23G 芯片的软件配置特 性使其适用于多种 LCD 应用,包括 LCD 模块和 显示子系统。HT16C23/HT16C23G 芯片可通过双 线双向 I2C 接口与大多数微处理器或微控制器进行通信。 HT16C2X系列为I2C介面、RAM mapping的LCD控制暨驱动IC,此系列以先进设计技术降低IC耗电、提升抗杂讯及ESD防护能力。全系列包含HT16C22/HT16C22G、HT16C23/HT16C23G、HT16C24/HT16C24G等。HT16C22已成功获得单相电表客戶的认可及采用,HT16C23及HT16C24适合于点数需求较大的三相电表的应用。 此系列內建显示记忆体及RC振荡电路;工作电压范围:2.4V~5.5V;提供2种图框扫描频率:80Hz or 160Hz;可由外挂电阻调整VLCD电压,也提供內建可由指令调整16阶的VLCD电压;提供全屏闪烁功能、有三种频率可选。透过I2C介面及多項內置电路,HT16C2X系列与系统控制晶片的传输只需2根信号线,大大省去系统零件及布线、降低客戶系统成本。 产品特性 -工作电压:2.4 ~ 5.5V -内部 32kHz RC 振荡器 -Bias:1/3 或 1/4;Duty:1/4 或 1/8 -带电压跟随器的内部 LCD 偏置发生器 -I2C 总线接口 -两种可选的 LCD 帧频率:80Hz 或 160Hz -多达 52×8 位的 RAM 用于存储显示数据 -显示模式: 56×4模式:56 SEG × 4 COM 56×4模式:56 SEG × 4 COM -多种闪烁模式 -读 / 写地址自动增加 -内建 16 级 VLCD 电压调整电路 -低功耗 -提供 VLCD引脚来调整 LCD 工作电压 -采用硅栅极 CMOS 工艺制造 -封装类型:48LQFP,64LQFP 此篇产品叙述为功能简介,如需要完整产品PDF资料可以联系许先生索取! -------------------------------------------------------- 产品型号:HT16C24           产品品牌:HOLTEK/合泰 产品年份:新年份              封装形式:LQFP80/LQFP64   工程技术服务支持,价格具有优势! HT16C24/HT16C24G -- RAM Mapping 72*4 / 68*8 /60*16 LCD Driver Controller 概述 HT16C24/HT16C24G 是 一 款 存 储 器 映 射 和 多 功 能 LCD 控制驱动芯片。该芯片显示模式有 288 点 (72×4),544 点 (68×8) 或 960 点 (60×16 )。HT16C24/HT16C24G 的软件配置特性使得它适用 于多种 LCD 应用,包括 LCD 模块和显示子系统。 HT16C24/HT16C24G 通过双线双向 I2C 接口与大 多数微处理器 / 微控制器进行通信。 HT16C2X系列为I2C介面、RAM mapping的LCD控制暨驱动IC,此系列以先进设计技术降低IC耗电、提升抗杂讯及ESD防护能力。全系列包含HT16C22/HT16C22G、HT16C23/HT16C23G、HT16C24/HT16C24G等。HT16C22已成功获得单相电表客戶的认可及采用,HT16C23及HT16C24适合于点数需求较大的三相电表的应用。 此系列內建显示记忆体及RC振荡电路;工作电压范围:2.4V~5.5V;提供2种图框扫描频率:80Hz or 160Hz;可由外挂电阻调整VLCD电压,也提供內建可由指令调整16阶的VLCD电压;提供全屏闪烁功能、有三种频率可选。透过I2C介面及多項內置电路,HT16C2X系列与系统控制晶片的传输只需2根信号线,大大省去系统零件及布线、降低客戶系统成本。 特性 -工作电压:2.4 ~ 5.5V -内部 32kHz RC 振荡器 -Bias:1/3、1/4 或 1/5;Duty:1/4、1/8 或 1/16 -带电压跟随器的内部 LCD 偏置发生器 -I2C接口 -两个可选 LCD 帧频率:80Hz 或 160Hz -多达 60×16 位 RAM 用来存储显示数据 -显示模式: 72×4模式:72 SEGs 和 4 COMs 68×8模式:68 SEGs 和 8 COMs 60×16模式:60 SEGs 和 16 COMs -多种闪烁模式 -读 / 写地址自动增加 -内建 16 级 LCD 工作电压调整电路 -低功耗 -提供 VLCD 引脚来调整 LCD 工作电压 -采用硅栅极 CMOS 制造工艺 -封装类型:64LQFP,80LQFP 此篇产品叙述为功能简介,如需要完整产品PDF资料可以联系许先生索取!   本公司是一家集产品销售及代理、技术研发、工程服务为一体的IC设计销售公司。专营LCD,LED液晶显示驱动IC  成立于2000年,具有液晶显示行业长达15年以上经验。致力为客户创造产品价值,充分发挥产品的优势!上述介绍为产品简介,如需具体产品资料欢迎联系本公司联系人索取。 LCD液晶驱动显示主要型号为VK1024,VK1056,VK1072,HT1620,HT1621,HT1622,HT1622B,HT1623,HT1625,HT1626,HT16C21,HT16C22,HT16C23,HT16C24,HT16L21,HT16L23等。产品不断更新中! LED液晶显示驱动IC主要型号HT/VK/TM1635  HT/VK/TM1620B  HT/VK/TM1628  HT/VK/TM1668  HT/VK/TM1623 HT/VK/TM1637  HT/VK/TM1640  HT/VK/ TM1629  HT/VK/TM1624  HT/VK/TM1639 HT/VK/TM1626A等,产品不断更新中! 备注:产品应用领域包括各式(LCD,LED面板显示)家电、民生消费品、车载音响、医疗保健、运动机械、衡量器、工业仪表、LCD,LED显示模块、数码伴侣、电子秤、万年历、玩具、礼品等各类工业和民用电器产品上。VK16C2X系列高抗噪声及高ESD防护能力尤适合数字式LCD电表、水表、瓦斯表等。 LCD/LED/VFD液晶控制器及驱动器系列 芯片简介如下: 高抗噪LCD液晶控制器及驱动系列 HT16C21  2.4~5.5V  20seg*4com 16seg*8com                 偏压1/3 1/4   I2C接口 HT16C22  2.4~5.5V  44seg*4com                            偏压1/2 1/3   I2C接口 HT16C23  2.4~5.5V  56seg*4com 52seg*8com                 偏压1/3 1/4   I2C接口 HT16C24  2.4~5.5V  72seg*4com 68seg*8com 60seg*16com     偏压1/3 1/4 1/5  I2C口 HT16K23  2.4~5.5V  20seg*4com 16seg*8com Keyscan 20/16*1 偏压1/3 1/4   I2C接口 HT9B92   2.4~5.5V  36seg*4com                            偏压1/2 1/3   I2C接口 HT9B92G  2.4~5.5V  40seg*4com                            偏压1/2 1/3   I2C接口 HT9B95A  2.4~5.5V  35seg*8com                            偏压1/4       I2C接口 HT9B95B  2.4~5.5V  43seg*4com 39seg*8com                 偏压1/3 1/4   I2C接口 HT9B95C  2.4~5.5V  43seg*4com 39seg*8com                 偏压1/3 1/4   I2C接口   低电压LCD液晶控制器及驱动系列 HT16L21   1.8V~5.5V  32seg*4com    接口I2C,SPI 3-Wire    偏压1/2 1/3  44LQFP LED:8 HT16L23   1.8V~5.5V  52seg*4com 48*8 接口I2C,SPI 3-Wire  偏压1/3 1/4  64LQFP LED:8 HT16LK24   1.8V~5.5V  67seg*1com  67seg*2com  67seg*3com  67seg*4com  63seg*8com 接口I2C,SPI 3-Wire  偏压1/1 1/2 1/3 1/4  Keyscan:4*12   64/80LQFP  LED:12 (128 Step)   RAM映射LCD控制器和驱动器系列 VK1024B  2.4V~5.2V    6seg*4com                      偏压1/2 1/3  NS0P16 VK1056B  2.4V~5.2V    14seg*4com                         偏压1/2 1/3  SOP24 VK1056C  2.4V~5.2V    14seg*4com                         偏压1/2 1/3  SSOP24 VK1072B  2.4V~5.2V    18seg*4com                         偏压1/2 1/3  SOP28 VK1072C  2.4V~5.2V   18seg*4com                         偏压1/2 1/3  SOP28 HT1620   2.4V~3.3V  32seg*4com 32seg*3com 32seg*2com     偏压1/2 1/3  64LQFP HT1620G  2.4V~3.3V  32seg*4com 32seg*3com 32seg*2com     偏压1/2 1/3  Goid Bump HT1621   2.4V~5.2V  32seg*4com 32seg*3com 32seg*2com     偏压1/2 1/3  44LQFP 48SSOP/LQFP HT1621G  2.4V~5.2V  32seg*4com 32seg*3com 32seg*2com     偏压1/2 1/3  Goid Bump HT1622    2.7V~5.2V  32seg*8com                          偏压1/4  64QFP 44/48/52/64LQFP HT1622G   2.7V~5.2V  32seg*8com                          偏压1/4      Goid Bump HT16220   2.4V~5.2V  32seg*8com                          偏压1/4      64LQFP HT1623    2.7V~5.2V  48seg*8com                          偏压1/4      100LQFP/100QFP HT1625    2.7V~5.2V  64seg*8com                          偏压1/4      100LQFP/100QFP HT1626    2.7V~5.2V  48seg*16com                         偏压1/5      100LQFP/100QFP HT1647    2.7V~5.2V  64seg*16com                         偏压1/4 1/5  100LQFP/100QFP HT1647G   2.7V~5.2V  64seg*16com                         偏压1/4 1/5  Goid Bump HT1650    2.7V~5.2V  80seg*16com  64seg*32com            偏压1/5 1/6  128QFP (以上型号全部封装形式规格 均有现货)   内存映射的LED控制器及驱动器 HT1632C   4.5V~5.5V  32seg*8com 24seg*16com  4-Wire接口            48/52LQFP HT1635A   4.5V~5.5V  44seg*8com   4-Wire接口                       64LQFP HT1635B   4.5V~5.5V  44seg*8com   I2C接口                           64LQFP HT16K33   4.5V~5.5V  16seg*8com   I2C接口  Keyscan:13*3            28SOP HT16K33   4.5V~5.5V  12seg*8com   I2C接口  Keyscan:10*3            24SOP HT16K33   4.5V~5.5V  8seg*8com    I2C接口  Keyscan:8*3             20SOP (以上型号全部封装形式规格 均有现货) (所有型号全部封装均有现货,欢迎加Q查询 191 888 5898 许生)     LCD液晶显示驱动控制器              HT1620   HT1620G   HT1621   HT1621B   HT1621G   HT1622   HT1622G   HT1623  HT1625   HT1626    HT16C21   HT16C22   HT16C23   HT16C24  HT1620   HT16220  HT1647   HT1650   HT1660    HT1670   HT16K23   HT9B92   HT9B92G    HT9B95A    HT9B95B   HT9B95C   HT16LK24  HT16L21  HT16L23   HT1611C  HT1613C  HT1616C (全部封装、规格形式 均有海量现货!)   二:LED/VFD控制、驱动器 HT16506   HT16511   HT16512   HT16515   HT16514   HT16561 HT16562  HT16565  HT16566  HT16523  HT16525  HT1632C  HT16K33  HT16K33  HT16528-001  HT16528-002  HT16528-003 (全部封装、规格形式 均有海量现货!)       芯片主要应用领域如下:  -显示模块:电子秤、无线麦克风、录音笔、影音多媒体、小家电周边 -家电类:电风扇、电饭煲、玩具、冷气机、暖风机、空调扇、饮水机、抽油烟机、消毒柜、电热水器、面包机、豆浆机、咖啡壶、电冰箱、洗衣机控制器、空调控制板等。 -通讯类:来电显示电话、无绳电话、IC电话、投币电话、对讲机等 -玩具游戏类:无线遥控车、PS游戏机、跳舞毯、方向盘、手柄、电子枪、PS开机IC等。 -计算机周边:显示器控制、PC-MOUSE、单/双滚、遥控MOUSE、键盘、手写板等。 -智能卡类:IC卡煤气表、电能表、水表、IC读写器、IC卡门禁系统等。 -汽车及防盗类:机车防盗器、********器、汽车天线控制器、里程表、汽车日历等。 -医用保健类:电子针灸器、甩脂机、智能体温计、LCD显示血压计、跑步机、按摩器、按摩垫、按摩椅等。 -仪表类:电压表、瓦斯表、电池电压检测器、频率计、计数器、电度表、水位检测器等。 -其它类:充电器、照相机、电子万年钟、自动给皂机、路灯控制器、呼叫服务器等

    标签: 8LCD 16c c21 RAM 416 ht 16 21 微电 映射

    上传时间: 2020-01-09

    上传用户:2937735731

  • VK3604A/B小体积蓝牙音箱4键触摸触控检测芯片多种输出方式选择:锁存/直接输出

    产品型号:VK3604A 产品品牌:VINKA/永嘉微电 封装形式:SOP16 产品年份:新年份 联 系 人:陈锐鸿 Q Q:361 888 5898 联系手机:188 2466 2436(信) 概述: VK3604/VK3604A具有4个触摸按键,可用来检测外部触摸按键上人手的触摸动作。该芯片具有较高的 集成度,仅需极少的外部组件便可实现触摸按键的检测。 提供了4路输出功能,可通过IO脚选择输出电平,输出模式,输出脚结构,单键/多键和最 长输出时间。芯片内部采用特殊的集成电路,具有高电源电压抑制比,可减少按键检测错误的 发生,此特性保证在不利环境条件的应用中芯片仍具有很高的可靠性。 此触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为各种触摸按键+IO输 出的应用提供了一种简单而又有效的实现方法。 特点: • 工作电压 2.4-5.5V • 待机电流7uA/3.3V,14uA/5V • 上电复位功能(POR) • 低压复位功能(LVR)  • 触摸输出响应时间:工作模式 48mS ,待机模式160mS • 通过AHLB脚选择输出电平:高电平有效或者低电平有效 • 通过TOG脚选择输出模式:直接输出或者锁存输出 • 通过SOD脚选择输出方式:CMOS输出或者开漏输出 • 通过SM脚选择输出:多键有效或者单键有效 • 通过MOT脚有效键最长输出时间:无穷大或者16S • 通过CS脚接对地电容调节整体灵敏度(1-47nF)  • 各触摸通道单独接对地小电容微调灵敏度(0-50pF) • 上电0.25S内为稳定时间,禁止触摸 • 上电后4S内自校准周期为64mS,4S无触摸后自校准周期为1S • 封装SOP16(150mil)(9.9mm x 3.9mm PP=1.27mm) ———————————————— 产品型号:VK3604B 产品品牌:VINKA/永嘉微电 封装形式:TSSOP16 产品年份:新年份 联 系 人:陈锐鸿 1.概述 VK3604B具有4个触摸按键,可用来检测外部触摸按键上人手的触摸动作。该芯片具有 较高的集成度,仅需极少的外部组件便可实现触摸按键的检测。 提供了4路直接输出功能。芯片内部采用特殊的集成电路,具有高电源电压抑制比,可 减少按键检测错误的发生,此特性保证在不利环境条件的应用中芯片仍具有很高的可靠性。 此触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为各种触摸按键+IO 输出的应用提供了一种简单而又有效的实现方法。   特点  • 工作电压 2.4-5.5V • 待机电流7uA/3.3V,14uA/5V • 上电复位功能(POR) • 低压复位功能(LVR)  • 触摸输出响应时间:  工作模式 48mS 待机模式160mS • CMOS输出,低电平有效,支持多键  • 有效键最长输出16S • 无触摸4S自动校准  • 专用脚接对地电容调节灵敏度(1-47nF)  • 各触摸通道单独接对地小电容微调灵敏度(0-50pF). • 上电0.25S内为稳定时间,禁止触摸. • 封装 TSSOP16L(4.9mm x 3.9mm PP=1.00mm) KPP841 标准触控IC-电池供电系列: VKD223EB --- 工作电压/电流:2.0V-5.5V/5uA-3V   感应通道数:1    通讯界面  最长回应时间快速模式60mS,低功耗模式220ms    封装:SOT23-6 VKD223B ---  工作电压/电流:2.0V-5.5V/5uA-3V   感应通道数:1    通讯界面   最长回应时间快速模式60mS,低功耗模式220ms    封装:SOT23-6 VKD233DB --- 工作电压/电流:2.4V-5.5V/2.5uA-3V  1感应按键  封装:SOT23-6   通讯界面:直接输出,锁存(toggle)输出  低功耗模式电流2.5uA-3V VKD233DH ---工作电压/电流:2.4V-5.5V/2.5uA-3V  1感应按键  封装:SOT23-6  通讯界面:直接输出,锁存(toggle)输出  有效键最长时间检测16S VKD233DS --- 工作电压/电流:2.4V-5.5V/2.5uA-3V  1感应按键  封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出  低功耗模式电流2.5uA-3V VKD233DR --- 工作电压/电流:2.4V-5.5V/1.5uA-3V  1感应按键  封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出  低功耗模式电流1.5uA-3V VKD233DG --- 工作电压/电流:2.4V-5.5V/2.5uA-3V  1感应按键  封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出   低功耗模式电流2.5uA-3V  VKD233DQ --- 工作电压/电流:2.4V-5.5V/5uA-3V  1感应按键  封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出    低功耗模式电流5uA-3V  VKD233DM --- 工作电压/电流:2.4V-5.5V/5uA-3V  1感应按键  封装:SOT23-6 (开漏输出) 通讯界面:开漏输出,锁存(toggle)输出    低功耗模式电流5uA-3V  VKD232C  --- 工作电压/电流:2.4V-5.5V/2.5uA-3V   感应通道数:2  封装:SOT23-6   通讯界面:直接输出,低电平有效  固定为多键输出模式,内建稳压电路 MTP触摸IC——VK36N系列抗电源辐射及手机干扰: VK3601L  --- 工作电压/电流:2.4V-5.5V/4UA-3V3  感应通道数:1  1对1直接输出 待机电流小,抗电源及手机干扰,可通过CAP调节灵敏  封装:SOT23-6 VK36N1D --- 工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:1  1对1直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6 VK36N2P --- 工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:2    脉冲输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6 VK3602XS ---工作电压/电流:2.4V-5.5V/60UA-3V  感应通道数:2  2对2锁存输出 低功耗模式电流8uA-3V,抗电源辐射干扰,宽供电电压   封装:SOP8 VK3602K --- 工作电压/电流:2.4V-5.5V/60UA-3V   感应通道数:2   2对2直接输出 低功耗模式电流8uA-3V,抗电源辐射干扰,宽供电电压   封装:SOP8 VK36N2D --- 工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:2   1对1直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOP8 VK36N3BT ---工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:3  BCD码锁存输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏  封装:SOP8 VK36N3BD ---工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:3  BCD码直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏  封装:SOP8 VK36N3BO ---工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:3  BCD码开漏输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP8/DFN8(超小超薄体积) VK36N3D --- 工作电压/电流:2.2V-5.5V/7UA-3V3  感应通道数:3  1对1直接输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N4B ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:4    BCD输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N4I---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:4    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N5D ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:5   1对1直接输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N5B ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:5    BCD输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N5I ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:5    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N6D --- 工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:6   1对1直接输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N6B ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:6    BCD输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N6I ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:6    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N7B ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:7    BCD输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N7I ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:7    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N8B ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:8    BCD输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N8I ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:8    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N9I ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:9    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) VK36N10I ---工作电压/电流:2.2V-5.5V/7UA-3V3   感应通道数:10    I2C输出 触摸积水仍可操作,抗电源及手机干扰  封装:SOP16/DFN16(超小超薄体积) 1-8点高灵敏度液体水位检测IC——VK36W系列 VK36W1D  ---工作电压/电流:2.2V-5.5V/10UA-3V3  1对1直接输出  水位检测通道:1 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOT23-6 备注:1. 开漏输出低电平有效  2、适合需要抗干扰性好的应用 VK36W2D  ---工作电压/电流:2.2V-5.5V/10UA-3V3  1对1直接输出  水位检测通道:2 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP8 备注:1.  1对1直接输出   2、输出模式/输出电平可通过IO选择 VK36W4D  ---工作电压/电流:2.2V-5.5V/10UA-3V3  1对1直接输出  水位检测通道:4 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1.  1对1直接输出   2、输出模式/输出电平可通过IO选择 VK36W6D  ---工作电压/电流:2.2V-5.5V/10UA-3V3  1对1直接输出  水位检测通道:6 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1.  1对1直接输出    2、输出模式/输出电平可通过IO选择 VK36W8I  ---工作电压/电流:2.2V-5.5V/10UA-3V3  I2C输出    水位检测通道:8 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1.  IIC+INT输出     2、输出模式/输出电平可通过IO选择  KPP841

    标签: 3604 输出 VK 体积 蓝牙音箱 检测 方式 芯片 触控 锁存

    上传时间: 2022-04-11

    上传用户:shubashushi66

  • 基于ZVZCS变换的电动汽车充电电源研制.rar

    随着环境污染的恶化和能源危机问题的凸现,低污染、高节能的电动汽车的研究和应用成为当今汽车产业的发展趋势。作为电动汽车所必须的辅助设备—充电电源,其安全性、高效性及便携性是影响电动汽车广泛推广的关键因素。因此,发展高效可靠的充电电源已成为电动汽车领域的重点研究方向之一。本论文以移相全桥直流变换器为基础,系统研究了移相全桥变换器控制策略和电路拓扑中的重要问题,研制一套适用于电动汽车的充电电源。论文的主要研究工作包括: 介绍电动汽车充电电源的充电方式以及软开关全桥技术,并对蓄电池的各种充电方式进行比较。 分析了移相全桥直流变换器的基本原理,对现今的几种零电压零电流(ZVZCS)移相全桥变换的主电路拓扑比较,选择一种具有副边简单辅助电路的移相全桥作为主电路拓扑,结合所需电源的具体参数,对主电路拓扑各元件进行设计,对主电路的工作过程分析,建立了其等效电路小信号模型。利用MATLAB中的SIMULINK仿真模块对主电路进行仿真,证明了主电路参数设计的合理性。 设计了以DSP为控制核心的电源系统,实现移相全桥控制、输出电流电压调制和过流过压保护等功能,采用中断功能实现移相PWM脉冲的软件生成方法,给出了系统主程序、中断服务程序、键盘及LCD显示的程序流程图。 最后给出样机的实验结果和分析。结果表明,在任何负载下,超前臂能够较好的实现零电压开关,在小于半载的情况下,滞后臂能够较好实现零电流开关。

    标签: ZVZCS 变换 电动汽车充电

    上传时间: 2013-05-29

    上传用户:dreamboy36