本文拟借助于神经网络良好的逼近能力,实现永磁同步电机的无位置传感器控制。 人工神经网络(Neural Network)可以逼近任意复杂非线性映射,具有很强的自学习自适应能力,十分适合于解决复杂的非线性控制问题。其中,BP神经网络是目前广泛应用的神经网络之一,得到了较为深入的研究,其结构简单,需要离线确定的参数少、泛化能力强、逼近精度高、实时性强,采用BP神经网络实现永磁同步电机的调速控制具有重要意义。 文中提出了基于BP神经网络的永磁同步电机自适应调速控制策略,建立了一种包含辨识网络和控制网络的双神经网络结构控制系统。辨识网络在线动态辨识系统输出并对控制网络参数进行调整,控制网络与PI控制方法相结合实现永磁同步电机自适应转速控制。仿真结果表明,该系统动态响应快、实时性较强、精度较高。 文中提出了一种基于混合训练算法的BP神经网络永磁同步电机无位置传感器控制方法。采用混沌优化和梯度下降法相结合的混合算法对BP神经网络进行离线训练后,将其用于永磁同步电机的转子位置角在线估计。结果表明,该训练算法可以有效地加快神经网络收敛速度,且估计的转子位置角误差较小、精度较高。 文中建立了以TMS320F2812芯片为核心的永磁同步电机调速控制系统,并进行了相应的软硬件设计,为实现永磁同步电机的各种控制策略奠定了实验基础。DSP控制系统为神经网络训练提供样本,为研究永磁同步电机的自适应调速控制和转子位置角估计创造了条件。
上传时间: 2013-05-23
上传用户:1101055045
本文首先简述了交流调速系统的发展和研究重点,介绍了异步电机调速系统的不同控制策略,详细论述了异步电机矢量控制系统的基本原理:异步电机的数学模型和坐标变换、矢量控制的基本方程式、转子磁链的观测方法、矢量控制的系统结构等,并重点分析了空间矢量脉宽调制(SVPWM)技术的基本原理、控制算法以及在TMS320LF2407中的实现方法。 从工程实际应用出发,本文设计和开发了一套以DSP芯片TMS320LF2407为核心的有速度传感器异步电机矢量控制系统,并给出了硬件和软件的实现方法。该系统的功率电路采用电压型的交-直-交变压变频结构,由整流电路、滤波电路及智能功率模块IPM(PM15RSH120)逆变电路构成;控制电路以DSP芯片TMS320LF2407为核心,加上PWM信号发生电路、定子电流检测电路、直流母线电压检测电路、智能功率模块驱动电路、速度检测电路、系统保护电路等,构成了功能齐全的异步电机全数字化矢量控制系统。 在此基础上,本文对无速度传感器异步电机矢量控制系统进行了有益的探索。提出了改进的电压型转子磁链估算模型,消除了电压型转子磁链估算模型中纯积分环节所固有的漂移问题和积累误差对实际系统性能的影响。在传统型参考自适应系统基础上,将系统中原有的自适应调节机构用一个具有在线学习能力的模糊神经网络取代,提出一种基于模糊神经网络的异步电机转速估计方法,并给出了速度估计器的模糊神经网络结构和学习算法。最后对基于模糊神经网络转速估计的异步电机矢量控制系统进行了仿真,结果表明该系统具有良好的性能。
上传时间: 2013-07-02
上传用户:amandacool
永磁同步电机(Permanent Magnet Synchronous Motor)因功率密度大、效率高、过载能力强、控制性能优良等优点,在中小容量调速系统和高精度调速场合发展迅速。但由于永磁同步电机的磁场具有独特的交叉耦合和交叉饱和现象,且其控制系统是一个强非线性、时变和多变量系统,要实现高精度调速就需对其控制策略进行深入研究。 永磁同步电机调速系统中,位置传感器的存在使得系统成本增加、结构复杂、可靠性降低,所以永磁同步电机的无位置传感器控制成为一个新的研究热点。本文拟借助于神经网络良好的逼近能力,实现永磁同步电机的无位置传感器控制。 人工神经网络(Neural Network)可以逼近任意复杂非线性映射,具有很强的自学习自适应能力,十分适合于解决复杂的非线性控制问题。其中,BP神经网络是目前广泛应用的神经网络之一,得到了较为深入的研究,其结构简单,需要离线确定的参数少、泛化能力强、逼近精度高、实时性强,采用BP神经网络实现永磁同步电机的调速控制具有重要意义。 文中提出了基于BP神经网络的永磁同步电机自适应调速控制策略,建立了一种包含辨识网络和控制网络的双神经网络结构控制系统。辨识网络在线动态辨识系统输出并对控制网络参数进行调整,控制网络与PI控制方法相结合实现永磁同步电机自适应转速控制。仿真结果表明,该系统动态响应快、实时性较强、精度较高。 文中提出了一种基于混合训练算法的BP神经网络永磁同步电机无位置传感器控制方法。采用混沌优化和梯度下降法相结合的混合算法对BP神经网络进行离线训练后,将其用于永磁同步电机的转子位置角在线估计。结果表明,该训练算法可以有效地加快神经网络收敛速度,且估计的转子位置角误差较小、精度较高。 文中建立了以TMS320F2812芯片为核心的永磁同步电机调速控制系统,并进行了相应的软硬件设计,为实现永磁同步电机的各种控制策略奠定了实验基础。DSP控制系统为神经网络训练提供样本,为研究永磁同步电机的自适应调速控制和转子位置角估计创造了条件。
上传时间: 2013-07-03
上传用户:kakuki123
神经网络控制算法作为一种比较成熟的智能控制算法,在空空导弹的理论研究中也得到了很多应用,但它的实际应用通常是通过软件实现的,而软件实现是串行执行指令,运行速度慢,可靠性低,很难满足实际导弹制导系统实时性的要求。控制算法硬件实现的最大特点就是可提高控制算法的实时运算速度和可靠性。本课题针对导弹制导系统,以FPGA为硬件平台研究神经网络控制算法的硬件实现。本文首先对BP神经网络算法思想进行了深入分析,并对BP网络的各个阶段进行了理论推导,最后对BP神经网络PID飞行控制算法进行了研究和总结,为硬件实现提供了理论基础。基于对上述理论的深入研究和分析,本文提出了一种适合FPGA实现该神经网络控制算法的硬件实现模型。在该模型中,神经网络各层之间采用串行执行数据方式,层间则采用并行运行方式,可有效提高系统的运算速度。由于模块化、层次化的自顶向下的模块化设计方法可有效减少错误的产生,是设计复杂大规模系统的理想设计方法。本文采用了此设计方法,通过把系统模块化,对各个子模块分别用VHDL硬件描述语言进行描述,并基于QUARTUS II软件开发平台进行综合和仿真,直到达到研究设计要求。最后将仿真程序源代码下载配置到具体的Cyclone II系列EP2C70 FPGA芯片中,应用于某实际导弹控制系统的研究。理论分析和实验结果表明该神经网络飞行控制算法的FPGA硬件实现是有效可行的,可满足系统实时性的要求,为制导系统的实际工程实现提供了基础。
上传时间: 2013-04-24
上传用户:冇尾飞铊
·人工神经网络与模拟进化计算.pdf人工神经网络与盲信号处理.pdf人工神经网络实用教程.pdf人工神经网络理论及应用.pdf人工神经网络建造.pdf人工神经网络技术及应用.pdf人工神经网络的模型及其应用.pdf人工神经网络导论.pdf人工神经网络——第六代计算机的实现.pdf基于神经网络的智能诊断.pdf二进前项人工神经网络----理论及应用.pdf电脑人脑化 神经网络.pdf大脑设计 
标签: 神经网络
上传时间: 2013-04-24
上传用户:lty6899826
·【内容简介】本书系统地叙述模拟退火算法、遗传算法、禁忌搜索、神经网络化算法、混沌 优化、混合优化策略等智能优化算法的基本理论和实现技术以及最新进展和应 用,并从结构上对算法进行统一描述,着重强调混合策略的开发与应用.
标签: 优化算法
上传时间: 2013-05-24
上传用户:bcjtao
文中将BP神经网络的原理应用于参数辨识过程,结合传统的 PID控制算法,形成一种改进型BP神经网络PID控制算法。该算法利用BP神经网络建立系统参数模型,能够跟踪被控对象的变化,取得较高的辨识精度。针对BP神经网络对权系初始值敏感的缺点,优化BP神经网络的初始权系数。通过BP算法修正BP网络自身权系数,实现PID参数的在线调整。仿真结果显示了该算法收敛速度快、精度高、鲁棒性强、稳定性好,表明了该算法的可行性与有效性。
上传时间: 2013-10-08
上传用户:cxl274287265
根据桥式起重机的特点,建立了安全性评估指标体系。在模糊综合评判的基础上,引入BP神经网络,建立了起重机安全评估的模糊神经网络模型。采用改进的梯度下降动量BP算法对网络进行计算,克服了常用BP算法收敛速度较慢的缺点。通过神经网络的多次学习训练,评估因素权重得到了优化。研究结果表明:训练好的模糊神经网络很好地获得并储存了专家的知识、经验和判断,可将此网络应用于桥式起重机的安全性评估。
上传时间: 2013-10-12
上传用户:思索的小白
研究了超声导波进行长距离在役管道检测技术, 并利用人工神经网络进行管道缺陷的智能识别, 通过超声导波设备进行了管道缺陷检测实验, 从原始检测数据的信号处理结果中提取出了样本特征值, 并建立和训练了一种用于实现管道缺陷识别的BP神经网络。
上传时间: 2014-01-24
上传用户:梧桐
一个VC编写的神经网络算法程序,对学智能算法的朋友很有用。
上传时间: 2015-01-12
上传用户:cainaifa