步进电机是一种将电脉冲转化为角位移的执行机构,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。由于步进电机的控制原理是根据控制信号动作,因此非常适合于单片机控制。 由于工业自动化水平的提高,对很多工业监控设备的要求也随着提高,特别是对其驱动部件步进电机的位移和速度控制的要求越来越高,用单片机机对二维步进电机实施精确位移和速度控制有极大的优越性,二维步进电机数控运行系统是由ipc(工业控制计算机)发出控制指令,通过与单片机之间的通信,使单片机产生控制步进电机运转的脉冲波形,使二维步进电机分别作正传、反转、快转、慢转和停止等。
上传时间: 2013-05-18
上传用户:sn2080395
作为交流异步电机控制的一种方式,矢量控制技术已成为高性能变频调速系统的首选方案。矢量控制系统中,磁链的观测精度直接影响到系统控制性能的好坏。在转子磁链定向的矢量控制系统中,转矩电流和励磁电流能得到完全解耦[1]。一般而言,转子磁链观测有两种方法:电流模型法和电压模型法。磁链的电流模型观测法中需要电机转子时间常数,而转子时间常数易受温度和磁饱和影响。为克服这些缺点,需要对电机的转子参数进行实时观测,但这样将使得系统更加的复杂。磁链的电压模型观测法中不含转子参数,受电机参数变化的影响较小。矢量控制计算量大,要求具有一定的实时性,从而对控制芯片的运算速度提出了更高的要求。 本文介绍了一种异步电机矢量控制系统的设计方法,采用了电压模型观测器[2]对转子磁链进行估计,针对积分环节的误差积累和直流漂移问题,采用了一种带饱和反馈环节的积分器[3]来代替电压模型观测器中的纯积分环节。整个算法在tms320f2812 dsp芯片上实现,运算速度快,保证了系统具有很好的实时性。
上传时间: 2013-04-24
上传用户:jhksyghr
较高性能的永磁同步电机矢量控制系统需要实时更新电机参数,文章中采用一种在线辨识永磁同步电机参数的方法。这种基于最小二乘法参数辨识方法是在转子同步旋转坐标系下进行的,通过MATLAB/SIMULINK对基于最小二乘法的永磁同步电机参数辨识进行了仿真,仿真结果表明这种电机参数辨识方法能够实时、准确地更新电机控制参数。 关键词:永磁同步电机;参数辨识;最小二乘法
上传时间: 2013-06-06
上传用户:685
本文介绍了步进电机驱动电路以及它的性能。
上传时间: 2013-07-20
上传用户:Ruzzcoy
以三相直流无刷永磁电机为对象,叙述利直流无刷永磁电机的控制
上传时间: 2013-05-31
上传用户:FFAN
开关磁阻电机是电机技术与现代电力电子技术、微机控制技术相结合的产物,既具有结构简单坚固、成本低、容错能力强,耐高温等优点,又在高度发展的电力电子和微机控制技术的支持下获得了良好的可控性能,目前己经在多个工业部门得到应用。因此,开关磁阻电机在驱动调速领域有着良好的发展前景。本论文在对前人成果的广泛了解和研究基础上,以philip公司生产的LPC2101为主控芯片,充分利用其高速运算能力和面向电机控制的高效控制能力,设计并制作了SRM控制器与系统软件。本文以开关磁阻电机的调速控制策略及其控制实现方法为主要研究内容,对开关磁阻电机的数学模型、功率变换器技术、控制策略、控制方案的实现进行了全面深入的研究。 全文的研究工作分为五个部分,第一部分介绍了开关磁阻电机调速系统的构成及基本工作原理,综述了开关磁阻电机的国内外发展现状、特点及研究动向,总结了开关磁阻电机系统存在的技术问题,提出了本文的研究目的和主要研究内容。 第二部分引用并讨论了SR电动机的基本数学模型和准线性数学模型,然后基于此重点分析了与电动机运行特性密切相关的相电流波形与转子角位移的函数关系,最后根据课题所关心的控制系统设计,在理论分析的基础上提出了SR电动机控制方案并进行了原理性分析,对SR电动机各个运行阶段的特点进行分析并初步提出控制方案。 第三部分对SR电动机调速系统的硬件设计进行了详细说明,主要包括以LPC2101为核心的控制系统的研究与设计,根据SR电机的控制特点,尽可能地开发了LPC2101的硬件资源和软件资源,使控制系统具有很高的控制精度和灵活性,然后对功率变换器进行了设计和制作,分析了各种主电路形式的优缺点,采用了新型IGBT功率管作为主开关元器件,使功率变换器结构得到简化,设计了IGBT的功率驱动电路,并专门设计了电压钳位电路和诸如过压、过流保护等保护单元,保证了整个系统安全可靠地运行,然后分析了SR电动机控制系统位置传感器检测电路设计、电流及电压斩波电路设计、电流检测及保护电路设计等。 第四部分主要介绍了系统的总体控制思想,分析了各个运行阶段的控制策略,对控制策略的软件实现进行了设计,并给出了软件实现的具体流程图,直观地体现了软件编程思想。最后,对系统进行了实验研究及分析。目前,该控制系统已调试完毕,基本实现预期功能。 本文对以ARM为控制核心的开关磁阻电动机控制系统进行了研究,得出了基于有位置传感器检测的控制方案。针对SR电机的控制特点,充分利用了ARM的硬件资源,采用PID数字调节,发出相通断信号和PWM信号,并和电流、电压等保护信号相结合,实现对主功率元件的通断控制。并且设计了相应的外围硬件检测、保护、控制及人机接口电路,使控制系统结构紧凑,可靠性高;系统的控制软件设计,采用模块化的程序设计方法,增强了系统的可读性及可维护性,实现了一种电压斩波和电流斩波控制相结合的控制方式;结合系统的硬件设计,开发了相应的软件模块,使系统具有完善的保护和控制性能。 本系统经过试验,调速范围可达100~2000转/分,效率较高,性能优良,验证了控制思想和控制方法的正确性。
上传时间: 2013-04-24
上传用户:独孤求源
实现了三相异步电机的svpwm的仿真,效果很好,自己调通并使用
上传时间: 2013-07-08
上传用户:1427796291
逆变器在自动控制系统、电机交流调速、电力变换以及电力系统控制中都起着重要的作用;各系统对逆变器的性能需求也越来越高。PWM控制多重逆变器正是基于这些需求,实现可变频、调压、调相、低谐波、高稳定性的解决方案。 PWM控制逆变器通过对每个脉冲宽度进行控制,以达到控制输出电压和改善输出波形的目的;多重逆变器则是把几个矩形波逆变器的输出组合起来起来形成阶梯波,从而消除谐波;PWM控制多重逆变器综合上述两种技术的特点,非常适合于应用在对谐波、电压输出及稳定性要求比较高的场合。电力半导体技术和集成电路技术的快速发展,使得多重逆变器的控制、实现成为可能。 本文首先分析风力发电系统对逆变器的要求,从多重逆变器理论和PWM逆变器理论出发,提出同步式PWM控制电压型串联多重逆变器系统解决方案。本方案也可以应用在逆变电源、交流电机调速及电力变换领域中。 文中建立了一个多重逆变器的PWM控制算法模型。该算法可完成频率、相位、幅值可调的多重逆变器的PWM控制,且能完成逆变器故障运行下的保护与告警。并在MATLAB/SIMULINK环境下对算法模型进行仿真与分析。 在比较了现有PWM发生解决方案的基础上,本文提出了一个基于FPGA(可编程逻辑阵列)的多重逆变器PWM控制系统实现方案。并给出一个主要由FPGA、ADC/DAC、驱动与保护电路、逆变器主回路及其他外围电路构成的多重逆变器系统解决方案。实验结果表明,此方案系统结构简单、可行,很好完成上述多重逆变器的PWM控制算法。
上传时间: 2013-06-28
上传用户:wmwai1314
步进电机是将电脉冲信号变换成角位移或直线位移的执行部件。步进电机可以直接用数字信号驱动,使用非常方便。一般电动机都是连续转动的,而步进电动机则有定位和运转两种基本状态,当有脉冲输入时步进电动机一步一步地转动,每给它一个脉冲信号,它就转过一定的角度。步进电动机的角位移量和输入脉冲的个数严格成正比,在时间上与输入脉冲同步,因此只要控制输入脉冲的数量、频率及电动机绕组通电的相序,便可获得所需的转角、转速及转动方向。在没有脉冲输入时,在绕组电源的激励下气隙磁场能使转子保持原有位置处于定位状态。因此非常适合于单片机控制。步进电机还具有快速启动、精确步进和定位等特点,因而在数控机床,绘图仪,打印机以及光学仪器中得到广泛的应用。步进电动机已成为除直流电动机和交流电动机以外的第三类电动机。传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。
上传时间: 2013-04-24
上传用户:3到15
该文主要介绍基于DSP(TMS320LF2407A)和CPLD(MAX3128A)伺服运动控制平台的设计.文中在讨论了永磁同步电机的控制策略的基础上提出了针对表面式永磁同步伺服电机的i=0的矢量控制,介绍了通过光电码盘确定永磁同步电机转子磁极位置的方法,以及SVPWM的原理和特性及其数字实现方法.详细阐述由TMS320LF2407A和MAX3128A构建的传动控制系统平台.以上述平台为基础,设计了一个基于矢量控制的三环永磁同步伺服系统,为解决典Ⅱ系统超调和抗扰性的矛盾,将IP调节器引入系统.通过试验证明IP调节器在不影响系统抗扰性和稳态精度的前提下,大大降低了电流的超调.工程实践证明了设计的正确性.为了满足用户对系统方便操作和监视的要求,实现参数在线修改以及故障综合,并满足一定可视性,提出并设计了基于RS232的串行通讯程序,包括两部分:PC机的监控系统和数字操作器.文中详细分析了设计数字操作器的硬件模块及框图和软件流程,实际应用表明数字操作器方便了用户对系统的操纵和监视,已在实际工程中得到应用.
上传时间: 2013-04-24
上传用户:ainimao