虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

电场

电场是电荷及变化磁场周围空间里存在的一种特殊物质。这种物质与通常的实物不同,它虽然不是由分子原子所组成的,但它却是客观存在的特殊物质,具有通常物质所具有的力和能量等客观属性。[1]
  • CoolMos的原理、结构及制造

    对于常规VDMOS器件结构, Rdson与BV存在矛盾关系,要想提高BV,都是从减小EPI参杂浓度着手,但是外延层又是正向电流流通的通道,EPI参杂浓度减小了,电阻必然变大,Rdson增大。所以对于普通VDMOS,两者矛盾不可调和。 但是对于COOLMOS,这个矛盾就不那么明显了。通过设置一个深入EPI的的P区,大大提高了BV,同时对Rdson上不产生影响。为什么有了这个深入衬底的P区,就能大大提高耐压呢? 对于常规VDMOS,反向耐压,主要靠的是N型EPI与body区界面的PN结,对于一个PN结,耐压时主要靠的是耗尽区承受,耗尽区内的电场大小、耗尽区扩展的宽度的面积,也就是下图中的浅绿色部分,就是承受电压的大小。常规VDMOS,P body浓度要大于N EPI, PN结耗尽区主要向低参杂一侧扩散,所以此结构下,P body区域一侧,耗尽区扩展很小,基本对承压没有多大贡献,承压主要是P body--N EPI在N型的一侧区域,这个区域的电场强度是逐渐变化的,越是靠近PN结面(a图的A结),电场强度E越大。所以形成的浅绿色面积有呈现梯形。

    标签: CoolMos 制造

    上传时间: 2013-11-11

    上传用户:小眼睛LSL

  • 电子学名词介绍

    电子学名词1、 电阻率---又叫电阻系数或叫比电阻。是衡量物质导电性能好坏的一个物理量,以字母ρ表示,单位为欧姆*毫米平方/米。在数值上等于用那种物质做的长1米截面积为1平方毫米的导线,在温度20C时的电阻值,电阻率越大,导电性能越低。则物质的电阻率随温度而变化的物理量,其数值等于温度每升高1C时,电阻率的增加与原来的电阻电阻率的比值,通常以字母α表示,单位为1/C。2、 电阻的温度系数----表示物质的电阻率随温度而变化的物理量,其数值等于温度每升高1C时,电阻率的增加量与原来的电阻率的比值,通常以字母α表示,单位为1/C。3、 电导----物体传导电流的本领叫做电导。在直流电路里,电导的数值就是电阻值的倒数,以字母ɡ表示,单位为欧姆。4、 电导率----又叫电导系数,也是衡量物质导电性能好坏的一个物理量。大小在数值上是电阻率的倒数,以字母γ表示,单位为米/欧姆*毫米平方。5、 电动势----电路中因其他形式的能量转换为电能所引起的电位差,叫做电动势或者简称电势。用字母E表示,单位为伏特。6、 自感----当闭合回路中的电流发生变化时,则由这电流所产生的穿过回路本身磁通也发生变化,因此在回路中也将感应电动势,这现象称为自感现象,这种感应电动势叫自感电动势。7、 互感----如果有两只线圈互相靠近,则其中第一只线圈中电流所产生的磁通有一部分与第二只线圈相环链。当第一线圈中电流发生变化时,则其与第二只线圈环链的磁通也发生变化,在第二只线圈中产生感应电动势。这种现象叫做互感现象。8、 电感----自感与互感的统称。9、 感抗----交流电流过具有电感的电路时,电感有阻碍交流电流过的作用,这种作用叫做感抗,以Lx表示,Lx=2πfL。10、容抗----交流电流过具有电容的电路时,电容有阻碍交流电流过的作用,这种作用叫做容抗,以Cx表示,Cx=1/12πfc。11、脉动电流----大小随时间变化而方向不变的电流,叫做脉动电流。12、振幅----交变电流在一个周期内出现的最大值叫振幅。13、平均值----交变电流的平均值是指在某段时间内流过电路的总电荷与该段时间的比值。正弦量的平均值通常指正半周内的平均值,它与振幅值的关系:平均值=0.637*振幅值。14、有效值----在两个相同的电阻器件中,分别通过直流电和交流电,如果经过同一时间,它们发出的热量相等,那么就把此直流电的大小作为此交流电的有效值。正弦电流的有效值等于其最大值的0.707倍。15、有功功率----又叫平均功率。交流电的瞬时功率不是一个恒定值,功率在一个周期内的平均值叫做有功功率,它是指在电路中电阻部分所消耗的功率,以字母P表示,单位瓦特。16、视在功率----在具有电阻和电抗的电路内,电压与电流的乘积叫做视在功率,用字母Ps来表示,单位为瓦特。17、无功功率----在具有电感和电容的电路里,这些储能元件在半周期的时间里把电源能量变成磁场(或电场)的能量存起来,在另半周期的时间里对已存的磁场(或电场)能量送还给电源。它们只是与电源进行能量交换,并没有真正消耗能量。我们把与电源交换能量的速率的振幅值叫做无功功率。用字母Q表示,单位为芝。

    标签: 电子学

    上传时间: 2013-11-23

    上传用户:zhoujunzhen

  • LC正弦波振荡电路基础知识

      LC 正弦波振荡电路   如果将该电路作为选频网络和正反馈,再加上基本放大电路和稳幅电路就构成LC正弦波振荡电路。   将电容和电感并联起来,在电容上施加一定电压后可产生零输入响应。这种响应在电容的电场和电感的磁场中交替转换便可形成正弦波振荡。   LC正弦波振荡电路的选频电路由电感和电容构成,可以产生高频振荡(>1MHz)。

    标签: 正弦波 振荡电路 基础知识

    上传时间: 2013-11-21

    上传用户:gy592333

  • 信号完整性知识基础(pdf)

    现代的电子设计和芯片制造技术正在飞速发展,电子产品的复杂度、时钟和总线频率等等都呈快速上升趋势,但系统的电压却不断在减小,所有的这一切加上产品投放市场的时间要求给设计师带来了前所未有的巨大压力。要想保证产品的一次性成功就必须能预见设计中可能出现的各种问题,并及时给出合理的解决方案,对于高速的数字电路来说,最令人头大的莫过于如何确保瞬时跳变的数字信号通过较长的一段传输线,还能完整地被接收,并保证良好的电磁兼容性,这就是目前颇受关注的信号完整性(SI)问题。本章就是围绕信号完整性的问题,让大家对高速电路有个基本的认识,并介绍一些相关的基本概念。 第一章 高速数字电路概述.....................................................................................51.1 何为高速电路...............................................................................................51.2 高速带来的问题及设计流程剖析...............................................................61.3 相关的一些基本概念...................................................................................8第二章 传输线理论...............................................................................................122.1 分布式系统和集总电路.............................................................................122.2 传输线的RLCG 模型和电报方程...............................................................132.3 传输线的特征阻抗.....................................................................................142.3.1 特性阻抗的本质.................................................................................142.3.2 特征阻抗相关计算.............................................................................152.3.3 特性阻抗对信号完整性的影响.........................................................172.4 传输线电报方程及推导.............................................................................182.5 趋肤效应和集束效应.................................................................................232.6 信号的反射.................................................................................................252.6.1 反射机理和电报方程.........................................................................252.6.2 反射导致信号的失真问题.................................................................302.6.2.1 过冲和下冲.....................................................................................302.6.2.2 振荡:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分线的匹配.................................................................................392.6.3.4 多负载的匹配.................................................................................41第三章 串扰的分析...............................................................................................423.1 串扰的基本概念.........................................................................................423.2 前向串扰和后向串扰.................................................................................433.3 后向串扰的反射.........................................................................................463.4 后向串扰的饱和.........................................................................................463.5 共模和差模电流对串扰的影响.................................................................483.6 连接器的串扰问题.....................................................................................513.7 串扰的具体计算.........................................................................................543.8 避免串扰的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的产生..................................................................................................614.2.1 电压瞬变.............................................................................................614.2.2 信号的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 电场屏蔽.........................................................................................654.3.1.2 磁场屏蔽.........................................................................................674.3.1.3 电磁场屏蔽.....................................................................................674.3.1.4 电磁屏蔽体和屏蔽效率.................................................................684.3.2 滤波.....................................................................................................714.3.2.1 去耦电容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 设计中的EMI.......................................................................................754.4.1 传输线RLC 参数和EMI ........................................................................764.4.2 叠层设计抑制EMI ..............................................................................774.4.3 电容和接地过孔对回流的作用.........................................................784.4.4 布局和走线规则.................................................................................79第五章 电源完整性理论基础...............................................................................825.1 电源噪声的起因及危害.............................................................................825.2 电源阻抗设计.............................................................................................855.3 同步开关噪声分析.....................................................................................875.3.1 芯片内部开关噪声.............................................................................885.3.2 芯片外部开关噪声.............................................................................895.3.3 等效电感衡量SSN ..............................................................................905.4 旁路电容的特性和应用.............................................................................925.4.1 电容的频率特性.................................................................................935.4.3 电容的介质和封装影响.....................................................................955.4.3 电容并联特性及反谐振.....................................................................955.4.4 如何选择电容.....................................................................................975.4.5 电容的摆放及Layout ........................................................................99第六章 系统时序.................................................................................................1006.1 普通时序系统...........................................................................................1006.1.1 时序参数的确定...............................................................................1016.1.2 时序约束条件...................................................................................1066.2 源同步时序系统.......................................................................................1086.2.1 源同步系统的基本结构...................................................................1096.2.2 源同步时序要求...............................................................................110第七章 IBIS 模型................................................................................................1137.1 IBIS 模型的由来...................................................................................... 1137.2 IBIS 与SPICE 的比较.............................................................................. 1137.3 IBIS 模型的构成...................................................................................... 1157.4 建立IBIS 模型......................................................................................... 1187.4 使用IBIS 模型......................................................................................... 1197.5 IBIS 相关工具及链接..............................................................................120第八章 高速设计理论在实际中的运用.............................................................1228.1 叠层设计方案...........................................................................................1228.2 过孔对信号传输的影响...........................................................................1278.3 一般布局规则...........................................................................................1298.4 接地技术...................................................................................................1308.5 PCB 走线策略............................................................................................134

    标签: 信号完整性

    上传时间: 2014-05-15

    上传用户:dudu1210004

  • 高速PCB基础理论及内存仿真技术(经典推荐)

    第一部分 信号完整性知识基础.................................................................................5第一章 高速数字电路概述.....................................................................................51.1 何为高速电路...............................................................................................51.2 高速带来的问题及设计流程剖析...............................................................61.3 相关的一些基本概念...................................................................................8第二章 传输线理论...............................................................................................122.1 分布式系统和集总电路.............................................................................122.2 传输线的RLCG 模型和电报方程...............................................................132.3 传输线的特征阻抗.....................................................................................142.3.1 特性阻抗的本质.................................................................................142.3.2 特征阻抗相关计算.............................................................................152.3.3 特性阻抗对信号完整性的影响.........................................................172.4 传输线电报方程及推导.............................................................................182.5 趋肤效应和集束效应.................................................................................232.6 信号的反射.................................................................................................252.6.1 反射机理和电报方程.........................................................................252.6.2 反射导致信号的失真问题.................................................................302.6.2.1 过冲和下冲.....................................................................................302.6.2.2 振荡:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分线的匹配.................................................................................392.6.3.4 多负载的匹配.................................................................................41第三章 串扰的分析...............................................................................................423.1 串扰的基本概念.........................................................................................423.2 前向串扰和后向串扰.................................................................................433.3 后向串扰的反射.........................................................................................463.4 后向串扰的饱和.........................................................................................463.5 共模和差模电流对串扰的影响.................................................................483.6 连接器的串扰问题.....................................................................................513.7 串扰的具体计算.........................................................................................543.8 避免串扰的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的产生..................................................................................................614.2.1 电压瞬变.............................................................................................614.2.2 信号的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 电场屏蔽.........................................................................................654.3.1.2 磁场屏蔽.........................................................................................674.3.1.3 电磁场屏蔽.....................................................................................674.3.1.4 电磁屏蔽体和屏蔽效率.................................................................684.3.2 滤波.....................................................................................................714.3.2.1 去耦电容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 设计中的EMI.......................................................................................754.4.1 传输线RLC 参数和EMI ........................................................................764.4.2 叠层设计抑制EMI ..............................................................................774.4.3 电容和接地过孔对回流的作用.........................................................784.4.4 布局和走线规则.................................................................................79第五章 电源完整性理论基础...............................................................................825.1 电源噪声的起因及危害.............................................................................825.2 电源阻抗设计.............................................................................................855.3 同步开关噪声分析.....................................................................................875.3.1 芯片内部开关噪声.............................................................................885.3.2 芯片外部开关噪声.............................................................................895.3.3 等效电感衡量SSN ..............................................................................905.4 旁路电容的特性和应用.............................................................................925.4.1 电容的频率特性.................................................................................935.4.3 电容的介质和封装影响.....................................................................955.4.3 电容并联特性及反谐振.....................................................................955.4.4 如何选择电容.....................................................................................975.4.5 电容的摆放及Layout ........................................................................99第六章 系统时序.................................................................................................1006.1 普通时序系统...........................................................................................1006.1.1 时序参数的确定...............................................................................1016.1.2 时序约束条件...................................................................................1063.2 高速设计的问题.......................................................................................2093.3 SPECCTRAQuest SI Expert 的组件.......................................................2103.3.1 SPECCTRAQuest Model Integrity .................................................2103.3.2 SPECCTRAQuest Floorplanner/Editor .........................................2153.3.3 Constraint Manager .......................................................................2163.3.4 SigXplorer Expert Topology Development Environment .......2233.3.5 SigNoise 仿真子系统......................................................................2253.3.6 EMControl .........................................................................................2303.3.7 SPECCTRA Expert 自动布线器.......................................................2303.4 高速设计的大致流程...............................................................................2303.4.1 拓扑结构的探索...............................................................................2313.4.2 空间解决方案的探索.......................................................................2313.4.3 使用拓扑模板驱动设计...................................................................2313.4.4 时序驱动布局...................................................................................2323.4.5 以约束条件驱动设计.......................................................................2323.4.6 设计后分析.......................................................................................233第四章 SPECCTRAQUEST SIGNAL EXPLORER 的进阶运用..........................................2344.1 SPECCTRAQuest Signal Explorer 的功能包括:................................2344.2 图形化的拓扑结构探索...........................................................................2344.3 全面的信号完整性(Signal Integrity)分析.......................................2344.4 完全兼容 IBIS 模型...............................................................................2344.5 PCB 设计前和设计的拓扑结构提取.......................................................2354.6 仿真设置顾问...........................................................................................2354.7 改变设计的管理.......................................................................................2354.8 关键技术特点...........................................................................................2364.8.1 拓扑结构探索...................................................................................2364.8.2 SigWave 波形显示器........................................................................2364.8.3 集成化的在线分析(Integration and In-process Analysis) .236第五章 部分特殊的运用...............................................................................2375.1 Script 指令的使用..................................................................................2375.2 差分信号的仿真.......................................................................................2435.3 眼图模式的使用.......................................................................................249第四部分:HYPERLYNX 仿真工具使用指南............................................................251第一章 使用LINESIM 进行前仿真.......................................................................2511.1 用LineSim 进行仿真工作的基本方法...................................................2511.2 处理信号完整性原理图的具体问题.......................................................2591.3 在LineSim 中如何对传输线进行设置...................................................2601.4 在LineSim 中模拟IC 元件.....................................................................2631.5 在LineSim 中进行串扰仿真...................................................................268第二章 使用BOARDSIM 进行后仿真......................................................................2732.1 用BOARDSIM 进行后仿真工作的基本方法...................................................2732.2 BoardSim 的进一步介绍..........................................................................2922.3 BoardSim 中的串扰仿真..........................................................................309

    标签: PCB 内存 仿真技术

    上传时间: 2014-04-18

    上传用户:wpt

  • 变压器局部发热故障分析

    热故障通常为变压器内部局部过热、温度升高。根据其严重程度,热性故障常被分为轻度过热(一般低于150℃)、低温过热(150—300℃)、中温过热(300~700℃)、高温过热(一般高于700℃)四种故障隋况。电故障通常指变压器内部在高电场强度的作用下,造成绝缘性能下降或劣化的故障。  

    标签: 变压器 发热 局部 故障分析

    上传时间: 2013-11-09

    上传用户:yoleeson

  • CPU散热器的电磁辐射仿真分析

    研究了散热器底面尺寸长宽比、鳍的取向及高度对第一谐振频率、第一谐振频率处电场增益及辐射方向的影响。并得出结论:当散热器底面的长宽比≥1时,随着宽边尺寸的增加,第一谐振频率基本保持在2.6 GHz,电场增益基本不变,约为8.3 dB,辐射方向变化较大;鳍的取向对电场增益及辐射方向影响不大,但纵向鳍高度对谐振频率影响较大。

    标签: CPU 散热器 仿真分析 电磁辐射

    上传时间: 2014-12-26

    上传用户:asaqq

  • tft-lcd驱动电路设计

    薄膜晶体管液晶显示器(TFT-LCD)具有重量轻、平板化、低功耗、无辐射、显示品质优良等特点,其应用领域正在逐步扩大,已经从音像制品、笔记本电脑等显示器发展到台式计算机、工程工作站(EWS)用监视器。对液晶显示器的要求也正在向高分辨率、高彩色化发展。 由于CRT显示器和液晶屏具有不同的显示特性,两者的显示信号参数也不同,因此在计算机(或MCU)和液晶屏之间设计液晶显示器的驱动电路是必需的,其主要功能是通过调制输出到LCD电极上的电位信号、峰值、频率等参数来建立交流驱动电场。 本文实现了将VGA接口信号转换到模拟液晶屏上显示的驱动电路,采用ADI公司的高性能DSP芯片ADSP-21160来实现驱动电路的主要功能。

    标签: tft-lcd 驱动 电路设计

    上传时间: 2013-10-30

    上传用户:hongmo

  • 单片机应用系统抗干扰技术

    单片机应用系统抗干扰技术:第1章 电磁干扰控制基础. 1.1 电磁干扰的基本概念1 1.1.1 噪声与干扰1 1.1.2 电磁干扰的形成因素2 1.1.3 干扰的分类2 1.2 电磁兼容性3 1.2.1 电磁兼容性定义3 1.2.2 电磁兼容性设计3 1.2.3 电磁兼容性常用术语4 1.2.4 电磁兼容性标准6 1.3 差模干扰和共模干扰8 1.3.1 差模干扰8 1.3.2 共模干扰9 1.4 电磁耦合的等效模型9 1.4.1 集中参数模型9 1.4.2 分布参数模型10 1.4.3 电磁波辐射模型11 1.5 电磁干扰的耦合途径14 1.5.1 传导耦合14 1.5.2 感应耦合(近场耦合)15 .1.5.3 电磁辐射耦合(远场耦合)15 1.6 单片机应用系统电磁干扰控制的一般方法16 第2章 数字信号耦合与传输机理 2.1 数字信号与电磁干扰18 2.1.1 数字信号的开关速度与频谱18 2.1.2 开关暂态电源尖峰电流噪声22 2.1.3 开关暂态接地反冲噪声24 2.1.4 高速数字电路的EMI特点25 2.2 导线阻抗与线间耦合27 2.2.1 导体交直流电阻的计算27 2.2.2 导体电感量的计算29 2.2.3 导体电容量的计算31 2.2.4 电感耦合分析32 2.2.5 电容耦合分析35 2.3 信号的长线传输36 2.3.1 长线传输过程的数学描述36 2.3.2 均匀传输线特性40 2.3.3 传输线特性阻抗计算42 2.3.4 传输线特性阻抗的重复性与阻抗匹配44 2.4 数字信号传输过程中的畸变45 2.4.1 信号传输的入射畸变45 2.4.2 信号传输的反射畸变46 2.5 信号传输畸变的抑制措施49 2.5.1 最大传输线长度的计算49 2.5.2 端点的阻抗匹配50 2.6 数字信号的辐射52 2.6.1 差模辐射52 2.6.2 共模辐射55 2.6.3 差模和共模辐射比较57 第3章 常用元件的可靠性能与选择 3.1 元件的选择与降额设计59 3.1.1 元件的选择准则59 3.1.2 元件的降额设计59 3.2 电阻器60 3.2.1 电阻器的等效电路60 3.2.2 电阻器的内部噪声60 3.2.3 电阻器的温度特性61 3.2.4 电阻器的分类与主要参数62 3.2.5 电阻器的正确选用66 3.3 电容器67 3.3.1 电容器的等效电路67 3.3.2 电容器的种类与型号68 3.3.3 电容器的标志方法70 3.3.4 电容器引脚的电感量71 3.3.5 电容器的正确选用71 3.3.6 电容器使用注意事项73 3.4 电感器73 3.4.1 电感器的等效电路74 3.4.2 电感器使用的注意事项74 3.5 数字集成电路的抗干扰性能75 3.5.1 噪声容限与抗干扰能力75 3.5.2 施密特集成电路的噪声容限77 3.5.3 TTL数字集成电路的抗干扰性能78 3.5.4 CMOS数字集成电路的抗干扰性能79 3.5.5 CMOS电路使用中注意事项80 3.5.6 集成门电路系列型号81 3.6 高速CMOS 54/74HC系列接口设计83 3.6.1 54/74HC 系列芯片特点83 3.6.2 74HC与TTL接口85 3.6.3 74HC与单片机接口85 3.7 元器件的装配工艺对可靠性的影响86 第4章 电磁干扰硬件控制技术 4.1 屏蔽技术88 4.1.1 电场屏蔽88 4.1.2 磁场屏蔽89 4.1.3 电磁场屏蔽91 4.1.4 屏蔽损耗的计算92 4.1.5 屏蔽体屏蔽效能的计算99 4.1.6 屏蔽箱的设计100 4.1.7 电磁泄漏的抑制措施102 4.1.8 电缆屏蔽层的屏蔽原理108 4.1.9 屏蔽与接地113 4.1.10 屏蔽设计要点113 4.2 接地技术114 4.2.1 概述114 4.2.2 安全接地115 4.2.3 工作接地117 4.2.4 接地系统的布局119 4.2.5 接地装置和接地电阻120 4.2.6 地环路问题121 4.2.7 浮地方式122 4.2.8 电缆屏蔽层接地123 4.3 滤波技术126 4.3.1 滤波器概述127 4.3.2 无源滤波器130 4.3.3 有源滤波器138 4.3.4 铁氧体抗干扰磁珠143 4.3.5 贯通滤波器146 4.3.6 电缆线滤波连接器149 4.3.7 PCB板滤波器件154 4.4 隔离技术155 4.4.1 光电隔离156 4.4.2 继电器隔离160 4.4.3 变压器隔离 161 4.4.4 布线隔离161 4.4.5 共模扼流圈162 4.5 电路平衡结构164 4.5.1 双绞线在平衡电路中的使用164 4.5.2 同轴电缆的平衡结构165 4.5.3 差分放大器165 4.6 双绞线的抗干扰原理及应用166 4.6.1 双绞线的抗干扰原理166 4.6.2 双绞线的应用168 4.7 信号线间的串扰及抑制169 4.7.1 线间串扰分析169 4.7.2 线间串扰的抑制173 4.8 信号线的选择与敷设174 4.8.1 信号线型式的选择174 4.8.2 信号线截面的选择175 4.8.3 单股导线的阻抗分析175 4.8.4 信号线的敷设176 4.9 漏电干扰的防止措施177 4.10 抑制数字信号噪声常用硬件措施177 4.10.1 数字信号负传输方式178 4.10.2 提高数字信号的电压等级178 4.10.3 数字输入信号的RC阻容滤波179 4.10.4 提高输入端的门限电压181 4.10.5 输入开关触点抖动干扰的抑制方法181 4.10.6 提高器件的驱动能力184 4.11 静电放电干扰及其抑制184 第5章 主机单元配置与抗干扰设计 5.1 单片机主机单元组成特点186 5.1.1 80C51最小应用系统186 5.1.2 低功耗单片机最小应用系统187 5.2 总线的可靠性设计191 5.2.1 总线驱动器191 5.2.2 总线的负载平衡192 5.2.3 总线上拉电阻的配置192 5.3 芯片配置与抗干扰193 5.3.1去耦电容配置194 5.3.2 数字输入端的噪声抑制194 5.3.3 数字电路不用端的处理195 5.3.4 存储器的布线196 5.4 译码电路的可靠性分析197 5.4.1 过渡干扰与译码选通197 5.4.2 译码方式与抗干扰200 5.5 时钟电路配置200 5.6 复位电路设计201 5.6.1 复位电路RC参数的选择201 5.6.2 复位电路的可靠性与抗干扰分析202 5.6.3 I/O接口芯片的延时复位205 5.7 单片机系统的中断保护问题205 5.7.1 80C51单片机的中断机构205 5.7.2 常用的几种中断保护措施205 5.8 RAM数据掉电保护207 5.8.1 片内RAM数据保护207 5.8.2 利用双片选的外RAM数据保护207 5.8.3 利用DS1210实现外RAM数据保护208 5.8.4 2 KB非易失性随机存储器DS1220AB/AD211 5.9 看门狗技术215 5.9.1 由单稳态电路实现看门狗电路216 5.9.2 利用单片机片内定时器实现软件看门狗217 5.9.3 软硬件结合的看门狗技术219 5.9.4 单片机内配置看门狗电路221 5.10 微处理器监控器223 5.10.1 微处理器监控器MAX703~709/813L223 5.10.2 微处理器监控器MAX791227 5.10.3 微处理器监控器MAX807231 5.10.4 微处理器监控器MAX690A/MAX692A234 5.10.5 微处理器监控器MAX691A/MAX693A238 5.10.6 带备份电池的微处理器监控器MAX1691242 5.11 串行E2PROM X25045245 第6章 测量单元配置与抗干扰设计 6.1 概述255 6.2 模拟信号放大器256 6.2.1 集成运算放大器256 6.2.2 测量放大器组成原理260 6.2.3 单片集成测量放大器AD521263 6.2.4 单片集成测量放大器AD522265 6.2.5 单片集成测量放大器AD526266 6.2.6 单片集成测量放大器AD620270 6.2.7 单片集成测量放大器AD623274 6.2.8 单片集成测量放大器AD624276 6.2.9 单片集成测量放大器AD625278 6.2.10 单片集成测量放大器AD626281 6.3 电压/电流变换器(V/I)283 6.3.1 V/I变换电路..283 6.3.2 集成V/I变换器XTR101284 6.3.3 集成V/I变换器XTR110289 6.3.4 集成V/I变换器AD693292 6.3.5 集成V/I变换器AD694299 6.4 电流/电压变换器(I/V)302 6.4.1 I/V变换电路302 6.4.2 RCV420型I/V变换器303 6.5 具有放大、滤波、激励功能的模块2B30/2B31305 6.6 模拟信号隔离放大器313 6.6.1 隔离放大器ISO100313 6.6.2 隔离放大器ISO120316 6.6.3 隔离放大器ISO122319 6.6.4 隔离放大器ISO130323 6.6.5 隔离放大器ISO212P326 6.6.6 由两片VFC320组成的隔离放大器329 6.6.7 由两光耦组成的实用线性隔离放大器333 6.7 数字电位器及其应用336 6.7.1 非易失性数字电位器x9221336 6.7.2 非易失性数字电位器x9241343 6.8 传感器供电电源的配置及抗干扰346 6.8.1 传感器供电电源的扰动补偿347 6.8.2 单片集成精密电压芯片349 6.8.3 A/D转换器芯片提供基准电压350 6.9 测量单元噪声抑制措施351 6.9.1 外部噪声源的干扰及其抑制351 6.9.2 输入信号串模干扰的抑制352 6.9.3 输入信号共模干扰的抑制353 6.9.4 仪器仪表的接地噪声355 第7章 D/A、A/D单元配置与抗干扰设计 7.1 D/A、A/D转换器的干扰源357 7.2 D/A转换原理及抗干扰分析358 7.2.1 T型电阻D/A转换器359 7.2.2 基准电源精度要求361 7.2.3 D/A转换器的尖峰干扰362 7.3 典型D/A转换器与单片机接口363 7.3.1 并行12位D/A转换器AD667363 7.3.2 串行12位D/A转换器MAX5154370 7.4 D/A转换器与单片机的光电接口电路377 7.5 A/D转换器原理与抗干扰性能378 7.5.1 逐次比较式ADC原理378 7.5.2 余数反馈比较式ADC原理378 7.5.3 双积分ADC原理380 7.5.4 V/F ADC原理382 7.5.5 ∑Δ式ADC原理384 7.6 典型A/D转换器与单片机接口387 7.6.18 位并行逐次比较式MAX 118387 7.6.28 通道12位A/D转换器MAX 197394 7.6.3 双积分式A/D转换器5G14433399 7.6.4 V/F转换器AD 652在A/D转换器中的应用403 7.7 采样保持电路与抗干扰措施408 7.8 多路模拟开关与抗干扰措施412 7.8.1 CD4051412 7.8.2 AD7501413 7.8.3 多路开关配置与抗干扰技术413 7.9 D/A、A/D转换器的电源、接地与布线416 7.10 精密基准电压电路与噪声抑制416 7.10.1 基准电压电路原理417 7.10.2 引脚可编程精密基准电压源AD584418 7.10.3 埋入式齐纳二极管基准AD588420 7.10.4 低漂移电压基准MAX676/MAX677/MAX678422 7.10.5 低功率低漂移电压基准MAX873/MAX875/MAX876424 7.10.6 MC1403/MC1403A、MC1503精密电压基准电路430 第8章 功率接口与抗干扰设计 8.1 功率驱动元件432 8.1.1 74系列功率集成电路432 8.1.2 75系列功率集成电路433 8.1.3 MOC系列光耦合过零触发双向晶闸管驱动器435 8.2 输出控制功率接口电路438 8.2.1 继电器输出驱动接口438 8.2.2 继电器—接触器输出驱动电路439 8.2.3 光电耦合器—晶闸管输出驱动电路439 8.2.4 脉冲变压器—晶闸管输出电路440 8.2.5 单片机与大功率单相负载的接口电路441 8.2.6 单片机与大功率三相负载间的接口电路442 8.3 感性负载电路噪声的抑制442 8.3.1 交直流感性负载瞬变噪声的抑制方法442 8.3.2 晶闸管过零触发的几种形式445 8.3.3 利用晶闸管抑制感性负载的瞬变噪声447 8.4 晶闸管变流装置的干扰和抑制措施448 8.4.1 晶闸管变流装置电气干扰分析448 8.4.2 晶闸管变流装置的抗干扰措施449 8.5 固态继电器451 8.5.1 固态继电器的原理和结构451 8.5.2 主要参数与选用452 8.5.3 交流固态继电器的使用454 第9章 人机对话单元配置与抗干扰设计 9.1 键盘接口抗干扰问题456 9.2 LED显示器的构造与特点458 9.3 LED的驱动方式459 9.3.1 采用限流电阻的驱动方式459 9.3.2 采用LM317的驱动方式460 9.3.3 串联二极管压降驱动方式462 9.4 典型键盘/显示器接口芯片与单片机接口463 9.4.1 8位LED驱动器ICM 7218B463 9.4.2 串行LED显示驱动器MAX 7219468 9.4.3 并行键盘/显示器专用芯片8279482 9.4.4 串行键盘/显示器专用芯片HD 7279A492 9.5 LED显示接口的抗干扰措施502 9.5.1 LED静态显示接口的抗干扰502 9.5.2 LED动态显示接口的抗干扰506 9.6 打印机接口与抗干扰技术508 9.6.1 并行打印机标准接口信号508 9.6.2 打印机与单片机接口电路509 9.6.3 打印机电磁干扰的防护设计510 9.6.4 提高数据传输可靠性的措施512 第10章 供电电源的配置与抗干扰设计 10.1 电源干扰问题概述513 10.1.1 电源干扰的类型513 10.1.2 电源干扰的耦合途径514 10.1.3 电源的共模和差模干扰515 10.1.4 电源抗干扰的基本方法516 10.2 EMI电源滤波器517 10.2.1 实用低通电容滤波器518 10.2.2 双绕组扼流圈的应用518 10.3 EMI滤波器模块519 10.3.1 滤波器模块基础知识519 10.3.2 电源滤波器模块521 10.3.3 防雷滤波器模块531 10.3.4 脉冲群抑制模块532 10.4 瞬变干扰吸收器件532 10.4.1 金属氧化物压敏电阻(MOV)533 10.4.2 瞬变电压抑制器(TVS)537 10.5 电源变压器的屏蔽与隔离552 10.6 交流电源的供电抗干扰方案553 10.6.1 交流电源配电方式553 10.6.2 交流电源抗干扰综合方案555 10.7 供电直流侧抑制干扰措施555 10.7.1 整流电路的高频滤波555 10.7.2 串联型直流稳压电源配置与抗干扰556 10.7.3 集成稳压器使用中的保护557 10.8 开关电源干扰的抑制措施559 10.8.1 开关噪声的分类559 10.8.2 开关电源噪声的抑制措施560 10.9 微机用不间断电源UPS561 10.10 采用晶闸管无触点开关消除瞬态干扰设计方案564 第11章 印制电路板的抗干扰设计 11.1 印制电路板用覆铜板566 11.1.1 覆铜板材料566 11.1.2 覆铜板分类568 11.1.3 覆铜板的标准与电性能571 11.1.4 覆铜板的主要特点和应用583 11.2 印制板布线设计基础585 11.2.1 印制板导线的阻抗计算585 11.2.2 PCB布线结构和特性阻抗计算587 11.2.3 信号在印制板上的传播速度589 11.3 地线和电源线的布线设计590 11.3.1 降低接地阻抗的设计590 11.3.2 减小电源线阻抗的方法591 11.4 信号线的布线原则592 11.4.1 信号传输线的尺寸控制592 11.4.2 线间串扰控制592 11.4.3 辐射干扰的抑制593 11.4.4 反射干扰的抑制594 11.4.5 微机自动布线注意问题594 11.5 配置去耦电容的方法594 11.5.1 电源去耦595 11.5.2 集成芯片去耦595 11.6 芯片的选用与器件布局596 11.6.1 芯片选用指南596 11.6.2 器件的布局597 11.6.3 时钟电路的布置598 11.7 多层印制电路板599 11.7.1 多层印制板的结构与特点599 11.7.2 多层印制板的布局方案600 11.7.3 20H原则605 11.8 印制电路板的安装和板间配线606 第12章 软件抗干扰原理与方法 12.1 概述607 12.1.1 测控系统软件的基本要求607 12.1.2 软件抗干扰一般方法607 12.2 指令冗余技术608 12.2.1 NOP的使用609 12.2.2 重要指令冗余609 12.3 软件陷阱技术609 12.3.1 软件陷阱609 12.3.2 软件陷阱的安排610 12.4 故障自动恢复处理程序613 12.4.1 上电标志设定614 12.4.2 RAM中数据冗余保护与纠错616 12.4.3 软件复位与中断激活标志617 12.4.4 程序失控后恢复运行的方法618 12.5 数字滤波619 12.5.1 程序判断滤波法620 12.5.2 中位值滤波法620 12.5.3 算术平均滤波法621 12.5.4 递推平均滤波法623 12.5.5 防脉冲干扰平均值滤波法624 12.5.6 一阶滞后滤波法626 12.6 干扰避开法627 12.7 开关量输入/输出软件抗干扰设计629 12.7.1 开关量输入软件抗干扰措施629 12.7.2 开关量输出软件抗干扰措施629 12.8 编写软件的其他注意事项630 附录 电磁兼容器件选购信息632

    标签: 单片机 应用系统 抗干扰技术

    上传时间: 2013-10-20

    上传用户:xdqm

  • 感应式频率域磁场传感器设计

    为解决长期制约我国电磁法勘探技术发展的感应式频率域磁传感器研制问题,以法拉第电磁感应定律为基础,通过对磁芯材料研制、感应线圈绕制、输出信号的开环补偿以及电场干扰信号的梳状屏蔽技术的研究,总结出传感器研制调试方法,并成功研制感应式频率域磁传感器。测试与试验结果表明,该传感器具有在3~10 000 Hz的工作频带内幅频特性曲线平坦的特点,实测结果与进口传感器相当。满足物探电磁法测量需要。

    标签: 感应式 传感器设计 频率 磁场

    上传时间: 2013-11-23

    上传用户:ppeyou