本文设计一种以C8051F020 单片机为处理器,双模式USB 为接口的比色计仪器。该仪器可以工作在USB 设备和主机两种模式。在设备模式下,能直接与计算机进行数据通信;在主机模式下,能读写U盘,通过U 盘进行数据的传输。仪器采用双USB 插座,由单片机判断确定设备的工作方式。
上传时间: 2013-11-01
上传用户:ZZJ886
S51编程器制作包:自制AT89S51编程器教程AT89S51芯片的日渐流行,对我们单片机初学者来说是一个大好消息。因为做个AT89S51编程器非常容易,而且串行编程模式更便于做成在线编程器,给频繁烧片,调试带来了巨大的方便。 电路: 只要焊13根线就可以搞定这个电路。基本原理:RST置高电平,然后向单片机串行发送 编程命令。P1.7(SCK)输入移位脉冲,P1.6(MISO)串行输出,P1.5(MOSI)串行输入(要了解详细编程原理可以去看AT89S51的数据手册)。使用并口发出控制信号,74373只是用于信号转换,因为并口直接输出高电平的电压有点没到位,使用其他芯片也可以,还有人提出直接接电阻。并口引脚1控制P1.7,引脚14控制P1.5,引脚15读P1.6,引脚16控制RST,引脚17接74373 LE(锁存允许),18-25这些引脚都可以接地。建议在你的单片机系统板上做个6芯的接口。注意:被烧写的单片机一定是最小系统(单片机已经接好电源,晶振,可以运行),VCC,GND是给74373提供电源的。 还有一个方案:使用串口+单片机,这个方案已经用了半年了。电路稍微麻烦一点,速度比较快,而且可以烧AT89C51等等。其实许多器件编程原理差不多,由于我没太多时间研究器件手册,更没有MONEY买一堆芯片来测试,所以只实现了几个最常用单片机编程功能(AT89C51,C52,C55,AT89S51,S52,S53)。如果要烧写其他单片机,你可以直接编写底层控制子程序(例如,写一个单元,读一个单元,擦除ROM的子程序)。如果有需要,我可以在器件选择栏提供一个“X-CHIP”的选择,“X-CHIP”的编程细节将由用户自己去实现。当你仔细阅读器件手册后,会发现实现这些子程序其实好容易,这也是初学者学单片机编程的好课题。如果成功了会极大的提高你学单片机的积极性。 软件: 这个软件的通信,控制部分早在半年前就完成了,这回只是换了个界面和加入并口下载线的功能,希望你看到这个软件不会想吐。使用很简当,有一点特别,当你用鼠标右键点击按钮后,可以把相关操作设置为自动模式(只有打开文件,擦除芯片,写FLASH ROM,读FLASH ROM,效验数据 可以设置),点击‘自动完成’后会依次完成这些操作,并在开始时检测芯片。当“打开文件”设为自动后,第2次烧写同一个文件时不必再去打开文件,软件会自动刷新缓冲。软件在WIN XP,WIN 2000可以使用(管理员登陆的),在WIN 98 ,WIN ME使用并口模式时会更快些。这个软件同时支持串口编程器和并口下载线。操作正常结束后会有声音提示。如果没有声卡或声卡烂了,则声音会从机箱扬声器中发出。注意:记得在CMOS设置中把并口设为ECP模式。就这些东西,应该够详细吧,还有什么问题或遇到什么困难可以联系我,软件出现什么问题一定要通知我修正。祝你一次就搞定。
上传时间: 2014-01-24
上传用户:13162218709
分,5'1Zk硬件和软件的角度介绍了智能电压数据采集装置各部分的原理、功能,给出了串行通讯的程序流程图及部分程序。经调试证明,该程序简单、可靠,具有较高的应用价值。
上传时间: 2013-11-08
上传用户:a673761058
PCA9519 是一个4 通道的I2C 总线/SMBus 中继器,可以实现将低电压两线串行总线接口的处理器与标准的I2C 总线或SMBus I/O 相连。该中继器在电平转换中保持I2C 总线系统所有的模式和特点的同时,允许通过给数据总线(SDA)和时钟总线(SCK)提供双向缓冲区来扩展I2C 总线,从而使I2C 总线或SMBus 在高电压下最大容限电容为400PF。SDA 和SCL 引脚具有耐压保护功能,当PCA9519 掉电时,均呈现出高阻抗特性。
上传时间: 2013-11-23
上传用户:brilliantchen
关键词 负电压,电荷泵,CAT660摘要 本文介绍了产品设计中负电压产生的方法。
上传时间: 2013-12-15
上传用户:miaochun888
MSP430F413实现的智能遥控器设计:MSP430F413 单片机是TI 公司最近推出的超低功耗混合信号16 位单片机系列中的一种。它采用16 位精简指令系统,125ns 指令周期,大部分的指令在一个指令周期内完成,16 位寄存器和常数发生器,发挥了最高的代码效率,而且片内含有硬件乘法器,大大节省运算的时间。该芯片采用低功耗设计,具有五种低功耗模式,供电电压范围为1.8~3.6V,在工作模式下:2.2 伏工作电压1MHz 工作频率时电流为225uA;在待机模式电流为0.7uA;掉电模式(RAM 数据保持不变)电流为0.1uA。所以特别适用长期使用电池工作的场合。它采用数字控制振荡器(DCO),使得从低功耗模式到唤醒模式的转换时间小于6us。该芯片具有8KB+256B Flash Memory,256B RAM,采用串行在线编程方式,为用户编译程序和控制参数提供灵活的空间,内部的安全保密熔丝可使程序不必非法复制。此外,MSP430F413 具有强大的中断功能,48 个通用I/O 引脚,96 段LCD 驱动器,一个16 位定时器,这样提高了对外围设备的开发能力。
上传时间: 2013-11-08
上传用户:bruce5996
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
世界著名厂家单片机简介1.Motorola 单片机:Motorola是世界上最大的单片机厂商,品种全,选择余地大,新产品多,在8位机方面有68HC05和升级产品68HC08,68HC05有30多个系列200多个品种,产量超过20亿片.8位增强型单片机68HC11也有30多个品种,年产量1亿片以上,升级产品有68HC12.16位单片机68HC16也有十多个品种.32位单片机683XX系列也有几十个品种.近年来以PowerPC,Codfire,M.CORE等作为CPU,用DSP作为辅助模块集成的单片机也纷纷推出,目前仍是单片机的首选品牌.Motorola单片机特点之一是在同样的速度下所用的时钟较Intel类单片机低的多因而使得高频噪声低,抗干扰能力强,更适合用于工控领域以及恶劣环境.Motorola 8位单片机过去策略是掩膜为主,最近推出OTP计划以适应单片机的发展,在32位机上,M.CORE在性能和功耗上都胜过ARM7.2.Microchip 单片机:Microchip 单片机是市场份额增长最快的单片机.他的主要产品是16C系列8位单片机,CPU采用RISC结构,仅33条指令,运行速度快,且以低价位著称,一般单片机价格都在1美元以下.Microchip 单片机没有掩膜产品,全部都是OTP器件(现已推出FLASH型单片机).Microchip强调节约成本的最优化设计,是使用量大,档次低,价格敏感的产品.3.Scenix单片机:Scenix单片机的I/O模块最有创意.I/O模块的集成与组合技术是单片机技术不可缺少的重要方面.除传统的I/O功能模块如并行I/O,URT,SPI,I2C,A/D,PWM,PLL,DTMF等,新的I/O模块不断出现,如USB,CAN,J1850,最具代表的是Motorola 32位单片机,它集成了包括各种通信协议在内的I/O模块,而Scenix单片机在I/O模块的处理上引入了虚拟I/O的概念. Scenix单片机采用了RISC结构的CPU,使CPU最高工作频率达50MHz.运算速度接近50MIPS.有了强有力的CPU,各种I/O功能便可以用软件的办法模拟.单片机的封装采用20/28引脚.公司提供各种I/O的库函数,用于实现各种I/O模块的功能.这些软件完成的模块包括多路UART,多种A/D,PWM,SPI,DTMF,FSK,LCD驱动等,这些都是通常用硬件实现起来相当复杂的模块.4.NEC单片机:NEC单片机自成体系,以8位机78K系列产量最高,也有16位,32位单片机.16位单片机采用内部倍频技术,以降低外时钟频率.有的单片机采用内置操作系统.NEC的销售策略注重服务大客户,并投入相当大的技术力量帮助大客户开发新产品.5.东芝单片机:东芝单片机从4位倒64位,门类齐全.4位机在家电领域仍有较大市场.8位机主要有870系列,90系列等.该类单片机允许使用慢模式,采用32KHz时钟功耗低至10uA数量级.CPU内部多组寄存器的使用,使得中断响应与处理更加快捷.东芝公司的32位机采用MIPS3000 ARISC的CPU结构,面向VCD,数字相机,图象处理市场.6.富士通单片机:富士通也有8位,16位和32位单片机,但是8位机使用的是16位的CPU内核.也就是说8位机与16位机指令相同,使得开发比较容易.8位机有名是MB8900系列,16位机有MB90系列.富士通注重服务大公司,大客户,帮助大客户开发产品.7.Epson 单片机:Epson公司以擅长制造液晶显示器著称,故Epson单片机主要为该公司生产的LCD配套.其单片机的LCD驱动做的特别好.在低电压,低功耗方面也很有特色.目前0.9V供电的单片机已经上市,不久LCD显示手表将使用0.5V供电.
上传时间: 2014-12-28
上传用户:leyesome
SPMC75低功耗操作:本应用例介绍如何设置使SPMC75F2413A进入节电模式。1.2 模式简介SPMC75F2413A有标准模式和两种节电模式(等待模式和就绪模式),相应功能如下: 标准模式(Normal)芯片在标准模式下运行耗电最大,所有的外设都可用。 等待模式(Wait)等待模式下,只有CPU掉电停止工作以降低功耗。其它外设保持着先前的状态并且功能可用。一旦唤醒,CPU将继续工作,执行接下去的指令。 就绪模式(Standby)就绪模式下所有的模块都变为无效,此时功耗达到最小。唤醒后,CPU复位并回到标准运行模式。其它外设可以通过软件分别设置关闭。就绪模式下所有功能都会关闭,只有系统时钟仍在工作。如果按键唤醒功能为有效,这两种模式都可以通过按键唤醒。具体唤醒源的分类及唤醒功能的介绍请参考《SPMC75F2413A编程指南》。【注意】如果MCP定时器3或定时器4已经处于PWM输出模式时,芯片不会进入等待或就绪模式。同样在仿真模式下也无法进入等待或就绪模式。
上传时间: 2013-11-20
上传用户:ming52900
时钟和低功耗模式片内集成有PLL(锁相环)电路。外接的基准晶体+PLL(锁相环)电路共同组成系统时钟电路。有关引脚:XTAL1/CLKIN:外接的基准晶体到片内振荡器输入引脚;如使用外部振荡器,外部振荡器的输出必须接该脚。XTAL2:片内PLL振荡器输出引脚;CLKOUT/IOPE0:该脚可作为时钟输出或通用IO脚;可用来输出CPU时钟或看门狗定时器时钟;由系统控制状态寄存器(SCSR1)中的位14决定。
上传时间: 2013-10-24
上传用户:1159797854