本文设计的直流无刷电机控制器是用于仿人机器人的四肢及躯干运动的无刷直流电机,电机工作电压24V、最大工作电流10A。上位PC机通过RS232通讯对直流无刷电机控制器下达启停、调速、转向等控制命令,直流无刷电机控制器根据这些命令对直流无刷电机进行相应的操作。硬件部分:由单片机STC89C52、DAC芯片TLC5616、专用芯片MC33035和6个MOSFET管构成直流无刷电机控制器,要求其具有控制电机启停、正反转和调速等功能。软件部分:利用汇编语言编程,实现单片机与PC机的通讯,控制命令和数据处理,向MC33035发送控制信号,实现对无刷电机进行各种操作。 无刷直流电机作为一种新型电机,它同时拥有普通直流电机和交流异步点击的优点,使得它取代老式的电机成为了未来电机发展的必然趋势。近年,随着国家经济和科技发展,我国的直流无刷电机生产,在型号和质量等方面都取得很大提高。面对国内外的巨大市场需求,直流无刷电机有着更广阔的应用市场。研发廉价稳定,适用范围广泛的直流无刷电机控制器有着很大的应用意义。
标签: 直流无刷电机
上传时间: 2022-05-22
上传用户:fliang
概述 是一款三相直流无刷无霍尔电机驱动控制 ,其外围电路简单,低成本,应用方 便;驱动方式具有效率高,噪音小等特点,芯片集成过载保护、堵转保护、低压保护等多种保 护机制,产品的安全可靠性高。特性工作电压范围: 3.8V~5.5V 工作温度范围:-40 ~85 度 适用于无霍尔电机 正反转转向控制 启动力矩调节 启动换向周期调节 软换向转向控制 转速信号输出 过载保护 恒流驱动 堵转保护 故障保护 缓启动功能 转速调节( 0.2VDD~VDD 线性调节) 无铅封装 SOP16
上传时间: 2022-06-15
上传用户:ttalli
摘要:为了得到输出稳定、开关耐压力小并且功率因教高的大功率三相整流器,对三相VIENNA 型 PFC电路拓扑进行了研究,对VIENNA整流器的原理进行了调查,根据原有的控制理念,在其控制方面采用了区间控制结合滞环控制法来控制整个电路。在整个系统方案设计究毕后,搭建Malab模型对所设计的电路进行仿真,由仿真结果可以看到系统的输出为稳压输出,开关器件的耐压力为输出电压的一半,输入功率因数为1,并且做了一些小样机对系统所采用的控制进行了验证。关键词:三相拓扑电路;区间控制法;功奉因教校正;滞环拉制1引言传统的三相整流虽然可以满足系统大功率的需求,但是存在谐波大、功率因数低等缺点。三相VIENNA型 PFC整流器,具有控制简单、输入功率因数高、无谐波污染等优点,适合于三相大功率电路,便于工程应用中的实现。文献中采用滞环控制方法1-1,用反馈信号与正弦采样信号组合,再应用PWM技术实现PFC电路的稳压和电流的正弦化.电路电感电流连续CCM和临界连续BCM模式下工作,简化了电路,降低制造成本。针对所作系统进行仿真,验证了系统的可行性和优越性。2 VIENNA电路原理2.1原始主电路如图1所示的电路三相三开关三电平整流电路2,开关采用4个二极管和一个全控型MOSFET管组成。根据电路的对称性可以知道电容中点电位与电网中点的电位近似相同。当A相开关管关断时,E点F点电位相等,Un-Ux则Ua=0.5Un-0.5Uc,又Un=Uc,又Ua-0.5Uc,因此Uw:=0,U-0.5Ux,即VIENNA电路中开关器件只承受了一半的输出直流电压,所以开关管电压应力小,非常适合于大功率三相PFC整流电路。
标签: 三相PFC整流电路
上传时间: 2022-06-16
上传用户:fliang
摘要:文中分析了功率因数校正的必要性,对有源功率因数校正主电路拓扑做了对比分析,确定本文选用无桥拓扑。分析了无桥PFC电路的原理和优缺点,可以看到无桥电路具有开关器件少,功耗低,成本小,电路体积小的优点。在控制方案选择单周期控制,并采用Malab Simulink仿真平台建立仿真模型,通过仿真表明,单周期控制的无桥PFC达到功率因数提高的目的。关键词:功率因教校正;无桥;单周期;Matlab随着电力电子技术的发展,电网中整流器、开关电源等非线性负载不断增加。这些存在冲击性的用电设备,将引起网侧输人电流发生严重畸变,产生大量造波污染,导致电网功率因数过低,所以提高功率因数势在必行"早期功率因数校正采用在整流器后加滤波电感电容实现,功率因数一般只有0.6左右;在20世纪90年代,有源功率因数校正(APFC)产生,是在整流器和负载之间接入一个DC/DC开关变换器,应用电流反馈技术,使输入端电流波形跟踪交流输入正弦电压波形,可以使输入电流波形接近正弦,功率因数可提高到0.99以上。由于该方案采用了有源器件,故称为有源功率因数校正APFC1有源功率因数校正主电路拓扑1.1 传统Boost拓扑传统Boost PFC电路由整流桥和PFC组成,如图1所示。传统Boost PFC电路工作时通过控制开关管的动作,采用反馈来控制电流波形,这样可以使交流网侧输入电流跟踪输入交流电压而接近正弦波,来提高功率因数。但其流通路径有3个半导体工作,当变换器功率和开关频率提高时,系统的系统通态损耗明显增加,整体效率低29
上传时间: 2022-06-17
上传用户:
产品型号:VK36E4 产品品牌:VINKA/永嘉微电/永嘉微 封装形式:ESSOP10 产品年份:新年份 联 系 人:许硕 Q Q:191 888 5898 联系手机:188 9858 2398(信) 深圳市永嘉微电科技有限公司,原厂直销,原装现货更有优势!工程服务,技术支持,让您的生产高枕无忧!QT501 量大价优,保证原装正品。您有量,我有价! 1.概述 VK36E4具有4个触摸按键,可用来检测外部触摸按键上人手的触摸动作。该芯片具有较 高的集成度,仅需极少的外部组件便可实现触摸按键的检测。 提供了4路直接输出功能。芯片内部采用特殊的集成电路,具有高电源电压抑制比,可 减少按键检测错误的发生,此特性保证在不利环境条件的应用中芯片仍具有很高的可靠性。 此触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为各种触摸按键+IO 输出的应用提供了一种简单而又有效的实现方法。 特点 • 工作电压 2.4-5.5V • 待机电流6uA/3.0V,12uA/5V • 上电复位功能(POR) • 低压复位功能(LVR) • 触摸输出响应时间: 工作模式 48mS 待机模式160mS • CMOS输出,低电平有效,支持多键 • 有效键最长输出16S • 无触摸4S自动校准 • 专用脚接对地电容调节灵敏度(1-47nF) • 各触摸通道单独接对地小电容微调灵敏度(0-50pF). • 上电0.25S内为稳定时间,禁止触摸. • 封装 ESSOP10L(4.9mm x 3.9mm PP=1.00mm)
上传时间: 2022-06-18
上传用户:2937735731
怎样判断IGBT MOS管的好坏?怎么检测它的引脚?IGBT1、判断极性首先将万用表拨在R×1KΩ 挡,用万用表测量时, 若某一极与其它两极阻值为无穷大,调换表笔后该极与其它两极的阻值仍为无穷大, 则判断此极为栅极(G )。其余两极再用万用表测量, 若测得阻值为无穷大, 调换表笔后测量阻值较小。在测量阻值较小的一次中,则判断红表笔接的为集电极( C);黑表笔接的为发射极(E)。2、判断好坏将万用表拨在R×10KΩ 挡,用黑表笔接IGBT 的集电极(C),红表笔接IGBT 的发射极( E),此时万用表的指针在零位。用手指同时触及一下栅极( G)和集电极(C),这时IGBT 被触发导通,万用表的指针摆向阻值较小的方向,并能站住指示在某一位置。然后再用手指同时触及一下栅极( G)和发射极( E),这时IGBT 被阻断,万用表的指针回零。此时即可判断IGBT 是好的。3、注意事项任何指针式万用表皆可用于检测IGBT。注意判断IGBT 好坏时,一定要将万用表拨在R×10KΩ 挡,因R×1KΩ 挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT 导通,而无法判断IGBT 的好坏。此方法同样也可以用于检测功率场效应晶体管( P-MOSFET )的好坏。现在经常要检测MOS 管了,转几篇MOS 管的检测方法,以备随时观摩!用万用表检测MOS 开关管好坏的方法一、MOS 开关管针脚判断:在电脑上, MOS 管都是N 沟道增强型的MOSFET 开关管, 大部分都采用TO-220F 封装,其针脚判断方法是:将针脚向下,印有型号的面向自己,左边的是栅极,中间是漏极,右边是源极。
上传时间: 2022-06-22
上传用户:
1.1特点·可以驱动12V~36V电机相连,电机额定电流不超过4A。·可以与有位置传感器和无位置传感器的无刷电机相连。·对于有位置传感器的无刷电机,可以根据霍尔传感器进行换相;对于无位置传感器的无刷电机,可以根据感应电动势进行换相。·可以与编码器相连进行准确位置控制。·可以进行正反转控制。·驱动电路和控制电路完全隔离,避免驱动部分给控制部分带来干扰。·可以与YXDSP-F28335A,YXDSP-F28335B相连。1.3概述YX-BLDC系统主要包含两部分,分别为YX-BLDC的硬件系统与相应的测试软件。YX-BLDC采用驱动芯片+MOSFET的形式,可以将直流母线电压逆变成交流电压来达到对直流无刷电机的控制;YX-BLDC可与YX-28335相连,DSP输出的PWM经过隔离送入驱动芯片,后经MOSFET来达到对电机的变频调速。相应的测试软件包括以下几个部分:·有位置传感器无刷电机的开环控制·有位置传感器无刷电机的闭环控制,采用PID控制·无位置传感器无刷电机的开环控制·若与实验箱连,与上位机相连的有位置传感器的无刷电机的闭环PID控制
标签: blcd
上传时间: 2022-06-24
上传用户:fliang
设计者根据对环境的需求,希望能不断开拓高级电机控制技术,用以制造节能空调、洗衣机和其他家用电器产品。到目前为止,较为完善的电机控制解决方案通常仅用作专门用途。然而,新一代数字信号控制器(Digital Signal Controller,DSC)的出现使得性价比高的高级电机控制算法最终成为现实。例如,空调需要能够对温度作出快速响应以迅速改变电机的转速。因此,我们需要高级电机控制算法,以制造出更加节能的静音设备。在这种情况下,磁场定向控制(Field Oriented Control,FOC)脱顾而出,成为满足这些环境需求的主要方法。本应用笔记讨论了使用Microchip dsPIC0DSC系列对永磁同步电机(Permanent Magnet Synchronous Motors,PMSM)进行无传感器FOC的算法。为什么使用FOC算法?BLDC电机的传统控制方法是以一个六步的控制过程来驱动定子,而这种控制过程会使生成的转矩产生振荡。在六步控制过程中,给一对绕组通电直到转子达到下一位置,然后电机换相到下一步。霍尔传感器用于确定转子的位置,以采用电子方式给电机换相。高级的无传感器算法使用在定子绕组中产生的反电动势来确定转子位置。六步控制(也称为梯形控制)的动态响应并不适用于洗衣机,这是因为在洗涤过程中负载始终处于动态变化中,并随实际洗涤量和选定的洗涤模式不同而变化。而且,对于前开式洗衣机,当负载位于滚筒的顶部时,必须克服重力对电机负载作功。只有使用高级的算法如FOC才可处理这些动态负载变化。
上传时间: 2022-06-29
上传用户:shjgzh
概述CK3362N/S是一款工业级有感三相直流无刷电机驱动控制IC ,其外围电路简单,低成本,应用方便;配合不同的MOSFET和电源电路,可以适配各种电压及各种功率的电机;芯片集成过流保护,堵转保护,限流驱动等多种保护控制机制。CK3362S在CK3362N基础上增加刹车且能量回馈功能。特性 工作电压范围:3.8V~5.5V· 适用于有霍尔电机· 马达升降速速度调节· 转速信号输出· 过载保护· 限流驱动· 堵载保护· 工作温度范围:-40~85度· 正反转转向控制· 转向软换向控制· 缓启动功能· 转速调节(0.02VDD~VDD线性调节)· SOP16无铅封装
上传时间: 2022-06-30
上传用户:wangshoupeng199
本应用笔记介绍一种采用dsPIC数字信号控制器(Digital Signal Controller,DSC)或PIC24单片机来实现无刷直流(Brushless Direct Current,BLDC)电机无传感器控制的算法。该算法利用对反电动势(Back-Electromotive Force,BEMF)进行数字滤波的择多函数来实现。通过对电机的每一相进行滤波来确定电机驱动电压换相的时刻。这一控制技术省却了分立的低通滤波硬件和片外比较器。需指出,这里论述的所有内容及应用软件,都是假定使用三相电机。该电机控制算法包括四个主要部分:·利用DSC或单片机的模数转换器(Analog-to-Digital Converter,ADC)来采样梯形波BEMF信号·PWM导通侧ADC采样,以降低噪声并解决低电感问题·将梯形波BEMF信号与VBUS/2进行比较,以检测过零点·用择多函数滤波器对比较结果信号进行滤波·以三种不同模式对电机驱动电压进行换相:-传统开环控制器·传统闭环控制器比例-积分(Proportional-Integral,Pl)闭环控制器
标签: BLDC
上传时间: 2022-07-01
上传用户: