激光测距是随着激光技术的出现而发展起来的一种精密测量技术,因其良好的精确度特性广泛地应用在军事和民用领域。但传统的激光测距系统大多采用分立的单元电路搭建而成,不仅造成了开发成本较高,电路较复杂,调试困难等诸多问题,而且这种系统体积和重量较大,严重阻碍了激光测距系统的普及应用,因此近年来激光测距技术向着小型化和集成化的方向发展。本文就旨在找出一种激光测距的集成化方案,将激光接收电路部分集成为一个专用集成电路,使传统的激光测距系统简化成三个部分,激光器LD、接收PD和一片集成电路芯片。 本文设计的激光测距系统基于相位差式激光测距原理,综合当前所有的测相技术,提出了一种基于FPGA的芯片运用DCM的动态移相功能实现相位差测量的方法。该方法实现起来方便快捷,无需复杂的过程计算,不仅能够达到较高的测距精度,同时可以大大简化外围电路的设计,使测距系统达到最大程度的集成化,满足了近年来激光测距系统向小型化和集成化方向发展的要求,除此,该方法还可以减少环境因素对测距误差的影响,降低测距系统对测试环境的要求。本论文的创新点有: 1.基于方波实现激光的调制和发射,简化了复杂的外围电路设计; 2.激光测距的数据处理系统在一片FPGA芯片上实现,便于系统的集成。 在基于DCM的激光测距方案中,本文详细的叙述了利用DCM测相的基本原理,并给出了由相位信息得到距离信息的计算过程,然后将利用不同测尺测得的结果进行合成,并最终将距离的二进制信息转换成十进制显示出来。本文以Xilinx公司Virtex-II Pro开发板做为开发平台,通过编程和仿真验证了该测距方案的可行性。在采用多次测量求平均值的情况下,该测距方案的测距精度可以达到3mm,测距量程可达100m。该方案设计新颖,可将整个的数据处理系统在FPGA芯片中实现,为最终的专用集成芯片的设计打下了基础,有利于测距系统的集成单片化。
上传时间: 2013-06-20
上传用户:lili1990
激光测距是一种非接触式的测量技术,已被广泛使用于遥感、精密测量、工程建设、安全监测以及智能控制等领域。早期的激光测距系统在激光接收机中通过分立的单元电路处理激光发、收信号以测量光脉冲往返时间,使得开发成本高、电路复杂,调试困难,精度以及可靠性相对较差,体积和重量也较大,且没有与其他仪器相匹配的标准接口,上述缺陷阻碍了激光测距系统的普及应用。 本文针对激光测距信号处理系统设计了一套全数字集成方案,除激光发射、接收电路以外,将信号发生、信号采集、综合控制、数据处理和数据传输五个部分集成为一块专用集成电路。这样就不再需要DA转换和AD转换电路和滤波处理等模块,可以直接对信号进行数字信号处理。与分立的单元电路构成的激光测距信号处珲相比,可以大大降低激光测距系统的成本,缩短激光测距的研制周期。并且由于专用集成电路带有标准的RS232接口,可以直接与通信模块连接,构成激光遥测实时监控系统,通过LED实时显示测距结果。这样使得激光测距系统只需由激光器LD、接收PD和一片集成电路组成即可,提出了桥梁的位移监测技术方法,并设计出一种针对桥梁的位移监测的具有既便携、有效又经济实用的监测样机。 本文基于xil inx公司提供的开发环境(ise8.2)、和Virtex2P系列XC2VP30的开发版来设计的,提出一种基于方波的利用DCM(数字时钟管理器)检相的相位式测距方法;采用三把侧尺频率分别是30MHz、3MHz、lOkHz,对应的测尺长度分别为5米、50米和15000米,对应的精度分别为±0.02米、±0.5米和±5米。设计了一套激光测距全数字信号处理系统。为了证明本系统的准确性,另外设计了一套利用延时的方法来模拟激光光路,经过测试,证明利用DCM检相的相位式测距方法对于桥梁的位移监测是可行的,测量精度和测量结果也满足设计方案要求。
上传时间: 2013-06-12
上传用户:fanboynet
本文的研究内容是在激光测距项目基础上进行的,分析了各种激光测距方法的利弊,最终选用脉冲激光测距的实现方式,并且对脉冲激光测距系统做了深入研究。 本文设计了以FPGA为核心的信号处理模块,实现了对激光信号的编码和译码、对激光发射控制时钟的分频、和内部PLL倍频实现内部高频计时时钟等,提高了系统的精度和稳定性。使用并行脉冲计数法,提高了计时精度,分析了可能产生误差的原因,并且对结果做了相应的修正,减小了激光测距系统的误差。并且制定了四种工作模式,可以根据不同的实际环境选择相应的测距模式,以达到最好的测量效果。 在接收方面突破以往普通的被动接收方式,提出了利用窗函数接收回波的主动接收方式,结合窄带滤光片的滤光效果,提高了系统的抗干扰性能。从课题要求出发,本激光测距系统实现了体积小、功耗低的特点,测量距离相对较近(0.5-50米),属于近距测量系统。
上传时间: 2013-04-24
上传用户:wyaqy
激光光谱探测是激光侦查、激光告警、污染物检测等领域中采用的重要技术。通过对来袭激光的光谱特征进行识别,可以为光电对抗提供依据。本文在分析和研究现有激光光谱探测技术的基础上,提出了通过非扫描M-Z干涉法来获取激光信号的相干图,并对该图进行快速傅立叶变换,从而实时获得激光光谱的技术。 在研究中,由M-Z干涉具形成的激光干涉条纹经CCD相机转换后以时间序列依次输出电信号,该时间序列的快速傅立叶变换用FPGA实现。论文依据告警系统响应时间和信噪比的要求,确定了探测器阵列的结构类型和有关参数;设计了CCD相机和FPGA的接口电路;编写了数据传输和存储模块。 在快速傅立叶变换的实现上,首先确定了采用基2按时间抽取的方法作为实现算法;应用型号为XC3S400的FPGA芯片,依靠ISE8.1软件开发平台,用硬件语言编写了精度为10位,序列长度为512点的快速傅里叶变换程序,并将所有程序成功下载到FPGA的配置芯片中。 此外,论文还设计了显示、电压转换、FPGA配置电路。最后,对设计的快速傅里叶变换模块进行了测试,将FPGA运算结果与理论计算结果进行了比较,结果表明FPGA计算结果达到应有的精度,运行速度可以满足激光光谱的实时探测要求。
上传时间: 2013-08-04
上传用户:hzy5825468
激光打标是一种利用高能量的激光束在打标物体表面刻下永久性标识的技术。与传统的压刻等方法相比,激光打标具有速度快、无污染、质量高、性能稳定、不接触物体表面等优点。激光打标是目前工业产品标记的先进技术,是一种高效的标记方法。传统的基于ISA总线、PCI总线或者USB总线的激光打标控制器增加了激光打标机的成本和体积。本文提出一种基于ARM+FPGA架构的嵌入式系统方案,主要的研究工作如下:首先,介绍了激光打标系统的组成,激光打标技术的发展现状和激光打标机的原理。根据激光打标控制系统的功能要求和性能要求,提出了ARM+FPGA的总体设计,并简要讨论了ARM和FPGA的特点和优势。ARM处理器的主要功能是完成打标内容的输入和变换处理,打标机参数的设置和控制打标。FPGA的作用是接收、存储和转换打标数据,然后产生控制信号去控制激光打标设备。然后,详细讨论了激光打标机控制器的硬件电路设计,包括ARM控制单元电路、FPGA控制单元电路和数模转换模块等。为了使控制器能够长时间可靠稳定地工作,还采取了隔离技术等许多抗干扰措施。完成了 FPGA中各个模块的程序设计,利用Quartus Ⅱ软件进行了仿真验证,调试了控制器的功能。本文所设计的嵌入式激光打标控制器发挥了ARM和FPGA各自的优势。经过在实际打标系统中的测试,证明本次设计的激光打标机控制器实现了预期的功能,取得了满意的打标效果。关键词:ARM,FPGA,激光打标,FIFO,CO2激光器,扫描振镜系统
上传时间: 2013-04-24
上传用户:hewenzhi
用cpld开发的激光控制器的源码,已经是成型产品,希望对大家有用
上传时间: 2013-09-02
上传用户:dxxx
比较早的一本书,内容很翔实,激光电源电路。
上传时间: 2013-11-10
上传用户:dave520l
武汉九申光电技术有限公司激光电源选型表格
上传时间: 2013-10-16
上传用户:熊少锋
半导体激光器是一种高功率密度并具有极高量子效率的器件,微小的电流变化将导致光功率输出的极大变化和器件参数(如激射波长、噪声性能、模式跳动)的变化,这些变化直接影响器件的安全工作和应用要求。 本公司设计和生产的半导体激光电源LDD-AAVV-T是连续可调恒流电源,采用了目前国际先进的半导体激光电源方案,选用优质元器件生产。具有输出噪声小、恒流特性好、电流稳定、抗干扰能力强等优点,并具有防过冲、反冲和反浪涌的稳压、恒流双重保护电路,保证激光器的稳定工作和使用寿命。LDD-AAVV型半导体激光电源采用单片机管理和控制,是一种智能化高精度恒流型开关电源,可作为半导体激光打标机的配套电源。针对激光打标设备的特点,电源还可管理水泵、指示光、振镜和Q开关几部分的开关。电源有LCD液晶显示,能提供电源工作的各个参数及其工作状态的显示,具备过压、过流、水温和水压报警功能,实为半导体激光器的理想电源。本电源还可以作为其它高精度恒流源,供设备使用。
上传时间: 2013-11-10
上传用户:lifangyuan12
自主移动机器人激光全局定位系统
上传时间: 2013-12-30
上传用户:wpwpwlxwlx