针对现有遗传算法在多维非线性优选方面的不足,本文提出了一种基于小生境进化算法(NEA)的非线性优选模型,探讨了NEA算法的参数选择原则。通过大量仿真和比较,表明算法在复杂非线性优选中具有快速、高效、鲁棒性强的特点,并能在全局范围内有效搜索所有最优解。
上传时间: 2014-08-02
上传用户:ZJX5201314
模拟退火算法是为了避免求解最优化出现局部极值的问题而提出的算法,保证最终的结果是全局最优的,该matlab源程序能在matlab环境中实现
上传时间: 2014-10-12
上传用户:225588
这是最难的一个程序了,算法是运筹学里的branch band的集装箱问题的最优动态规划解法,当年我的头都大了才实现的,绝得数学加实践的程序
标签: 程序
上传时间: 2015-04-22
上传用户:731140412
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
标签: 模拟退火算法
上传时间: 2015-04-24
上传用户:R50974
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
标签: 模拟退火算法
上传时间: 2015-04-24
上传用户:ryb
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
标签: 模拟退火算法
上传时间: 2014-12-19
上传用户:TRIFCT
图论算法库 C++ 语言实现 代码内容 图论算法库,包括以下算法: 单源最短路径 Dijkstra 算法 单源最短路径 Bellman-Ford 算法 最小生成树 Prim 算法 每对节点间最短路径 Flod-Warshall 算法 语言 C++ 编译平台 VisualAge C++ 4.0 作者 starfish (starfish.h@china.com) 备注 程序用C++语言编写,在VisualAge C++ 4.0下调试通过。压缩包内的Graph.h文件包含所有的库函数,其调用接口见程序内注释。其他的文件是用来测试算法的测试程序,在VisualAge C++ 4.0下编译运行。 该算法是我为参加ACM/ICPC竞赛而准备的资料,由于竞赛的对编程速度要求较高,所以为了将代码写的短一点,为了便于调试,代码的写的并不是最优的。 虽然该代码在VisualAge C++ 4.0下写成,但是很容易将其移植到MS Visual C++上。
上传时间: 2013-12-21
上传用户:lyy1234
用遗传算法解决背包问题,可以求最优解,也可以自己设定次数
上传时间: 2014-12-08
上传用户:ywqaxiwang
遗传算法的差异算法源代码,能够有效的避免局部最优。
上传时间: 2013-12-20
上传用户:koulian
pso算法的代码,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值,
上传时间: 2015-06-22
上传用户:阿四AIR