虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

毫伏

  • BusHound.rar

    BusHound软件是由美国perisoft公司研制的一种专用于PC机各种总线数据包监视和控制的开发工具软件,其名“hound”的中文意思为“猎犬”,即指其能敏锐地感知到总线的丝毫变化。 Bus Hound是一个超级软件总线协议分析器,用于捕捉来自设备的协议包和输入输出操作,其优良特性如下: 支持所有版本的IDE,SCSI,USB,1394总线 支持各类设备如硬盘库,DVD,鼠标,扫描仪,网络照相机等 捕捉数据的总量仅受机器内存限制 可以设置触发信号自动停止捕获操作 测试读取,同步等设备性能

    标签: BusHound

    上传时间: 2013-06-14

    上传用户:康郎

  • 集成式工业接口数字隔离器减少尺寸与成本

    随着竞争产品价格的降低和产品差异化需求的增加,在工业市场上生存也变得越来越艰难。同时,安全标准不见有丝毫放宽,这要求更多的工业应用采用电流隔离,给光耦合器带来不利影响。这些不利影响会导致以下这些因素的增加:尺寸、功耗、电路板、元件数和成本。

    标签: 集成式 工业接口 尺寸

    上传时间: 2013-11-23

    上传用户:lifangyuan12

  • 信号放大电路

    2-1 何谓测量放大电路?对其基本要求是什么? 在测量控制系统中,用来放大传感器输出的微弱电压,电流或电荷信号的放大电路称为测量放大电路,亦称仪用放大电路。对其基本要求是:①输入阻抗应与传感器输出阻抗相匹配;②一定的放大倍数和稳定的增益;③低噪声;④低的输入失调电压和输入失调电流以及低的漂移;⑤足够的带宽和转换速率(无畸变的放大瞬态信号);⑥高输入共模范围(如达几百伏)和高共模抑制比;⑦可调的闭环增益;⑧线性好、精度高;⑨成本低。   2-2 图2-2a所示斩波稳零放大电路中,为什么采用高、低频两个通道,即R3、C3组成的高频通道和调制、解调、交流放大器组成的低频通道? 采用高频通道是为了使斩波稳零放大电路能在较宽的频率范围内工作,而采用低频通道则能对微弱的直流或缓慢变化的信号进行低漂移和高精度的放大。   2-3 请参照图2-3,根据手册中LF347和CD4066的连接图(即引脚图),将集成运算放大器LF347和集成模拟开关CD4066接成自动调零放大电路。 LF347和CD4066接成的自动调零放大电路如图X2-1。

    标签: 信号放大电路

    上传时间: 2013-10-09

    上传用户:ysjing

  • 电脑主板生产工艺及流程

    随着科学技术的不断发展,人们的生活水平的不断提高,通信技术的不断扩延,计算机已经涉及到各个不同的行业,成为人们生活、工作、学习、娱乐不可缺少的工具。而计算机主板作为计算机中非常重要的核心部件,其品质的好坏直接影响计算机整体品质的高低。因此在生产主板的过程中每一步都是要严格把关的,不能有丝毫的懈怠,这样才能使其品质得到保证。 基于此,本文主要介绍电脑主板的SMT生产工艺流程和F/T(Function Test)功能测试步骤(F/T测试步骤以惠普H310机种为例)。让大家了解一下完整的计算机主板是如何制成的,都要经过哪些工序以及如何检测产品质量的。 本文首先简单介绍了PCB板的发展历史,分类,功能及发展趋势,SMT及SMT产品制造系统,然后重点介绍了SMT生产工艺流程和F/T测试步骤。

    标签: 电脑主板 生产工艺 流程

    上传时间: 2013-11-06

    上传用户:paladin

  • 基于LM317和LM337的可调直流稳压电源设计

    基于LM317和LM337的正负可调电源由正负3到正负10伏,本人在短学期实现过绝对好使

    标签: LM 317 337 可调直流稳

    上传时间: 2013-11-11

    上传用户:Bunyan

  • 大功率全桥串联谐振充电电源理论设计

    为了对电容重复频率且高能量转换效率地充电,开展了全桥串联谐振充电电源的理论设计。通过数值解析的方法获得谐振电感、电容、功率器件耐压与通流、电源功率、脉冲变压器伏秒数等参数,通过数值模拟的方法获得脉冲变压器励磁电感参数,以基于Pspice的全电路仿真验证设计参数的合理性。仿真结果表明为了实现对110 nF电容1 kHz重频充电,在初级电压为1.2 kV和谐振参数为33 kHz时,谐振电感、电容应分别为625 nH,37 μF,脉冲变压器伏秒数、励磁电感至少分别应为45 mVs、1 mH,功率器件峰值电流约300 A。

    标签: 大功率 全桥 串联谐振 充电电源

    上传时间: 2013-11-08

    上传用户:angle

  • 功率解耦的单相光伏并网逆变器

    太阳能AC模块逆变器是近年来发展非常快的技术,本文提出一种新型的基于反激 变换器的逆变器拓扑结构。该电路结构简单,通过Zeta电路将功率脉动转换成小容量电容上的 电压脉动。大大减小了直流输入侧的低频谐波电流,实现了良好的功率解耦。相比较其他AC模 块逆变器中使用大电容进行功率解耦的方法, 既节省了成本又减小了体积。文中采用峰值电流控 制方案,使逆变器能够输出纯正弦的并网电流波形和单位功率因数。最后通过仿真和实验数据验 证了所提新型逆变器的有效性和可行性。 关键词 光伏系统 AC模块 反激变换器 功率解耦 1 引言 随着全球经济的快速发展,人类对能源的需求 日益增长,传统化石能源的大量消耗使全球面临着 能源危机l1-2]。因此世界各国正在致力于新能源的 开发和使用。太阳能、风能、地热能和潮汐能等能 源形式都可以为人类所利用,而这其中太阳能以其 资源丰富、分布广泛、可以再生以及不污染环境等 优点,受到学者们的高度重视。 太阳能光伏发电是一种将太阳光辐射能通过光 伏效应,经太阳能电池直接转换为电能的新型发电 技术_3 。目前太阳能光伏系统主要分为分散式独 立发电系统和并网式发电系统l4j。其中后者省略 了直流环节的蓄电池组,对电能的利用更加灵活, 具有很好的发展前景。在光伏并网系统中,逆变器 决定着系统的效率以及输出电流波形的质量,是整 个光伏发电系统的技术核心,因此研究开发新型高 效逆变器成为越来越多学者关注的焦点。 光伏逆变器的拓扑结构多种多样,过去主要是 集中式逆变器, 目前应用较多的是串联式逆变器和 多组串联式逆变器[5-7 3。AC模块逆变器是近几年 来比较热门的技术l8。 。在这种系统中,每组光电 模块和一个逆变器集成到一起,形成一个AC模 块,再将所有AC模块的输出并联到一起接入电 网。这样就消除了传统逆变器中,由于逆变器和光 伏模块不匹配而造成的功率损失。

    标签: 功率解耦 光伏并网 单相 逆变器

    上传时间: 2013-11-04

    上传用户:liujinzhao

  • 安富利:低成本电表解决方案(英文版)

      本文是关于安富利公司低成本电表解决方案的介绍。 电表用于测量居民、商业或用电设备的电能消耗。   特性   (1)RS232的图形化用户界面 (GUI) 可以显示能量(度)、功率(瓦)、电压(伏)、电流(安)、功率因子(PF)、频率(赫兹) 的测量结果    (2)电压和电流测量范围宽   输入指标   (1)输入电压范围: 90V到264V交流电压   (2)输入电流: 0~10A    (3)总功率: 2640W   (4)空载功耗可以低于300mW @264Vac/ 63Hz 和140mW @90Vac/47Hz    (5)1% 高测量精度

    标签: 安富利 电表 方案 英文

    上传时间: 2013-12-06

    上传用户:450976175

  • ATX电源

    ATX是计算机的工作电源,作用是把交流220V的电源转换为计算机内部使用的直流5V,12V,24V的电源。   ATX电源的特点:与AT电源相比,ATX电源增加了“+3.3V、+5VSB、PS-ON ”三个输出。其中“+3.3V”输出主要是供CPU用,而“+5VSB”、“PS-ON”输出则体现了ATX电源的特点。ATX电源最主要的特点就是,它不采用传统的市电开关来控制电源是否工作,而是采用“+5VSB、PS-ON”的组合来实现电源的开启和关闭,只要控制“PS-ON”信号电平的变化,就能控制电源的开启和关闭。“PS-ON”小于1V伏时开启电源,大于4.5伏时关闭电源。

    标签: ATX 电源

    上传时间: 2013-11-14

    上传用户:xuanjie

  • 内置看门狗的电压监控器电路设计与选型指南

    复位监控器件内部集成精确的电压监控电路,可通过确定的阈值电压启动复位操作,同时排除瞬间干扰的影响,又可以防止MCU在电源启动和关闭期间的误操作,保证数据安全。通常,传统的RC复位电路是不可靠的,如果一个计算机系统的复位不可靠将带来意想不到的麻烦。选择一款合适的复位器件有利于提高系统的可靠性和性价比。可是,用户需要如何选择才能找到一款适合自己系统的复位器件呢?在选择复位器件之前,首先我们需要对系统需求做一剖析,如:该系统是多少伏的系统?是高电平复位还是低电平复位,还是同时需要用到高电平复位和低电平复位?除了复位功能,您的系统是否需要用到看门狗、E2PROM等器件?在您的PCB电路设计中给复位芯片预留了多大的空间?解决了以上问题我们接下来看如何选择合适的复位器件:

    标签: 内置 看门狗 电压监控器 电路设计

    上传时间: 2013-11-25

    上传用户:lizhen9880