模拟退火算法求解经典图论中的图着色问题的源程序
上传时间: 2014-12-03
上传用户:爱死爱死
模拟退火算法用于求解旅行商问题的matlab源程序
上传时间: 2015-03-14
上传用户:teddysha
模拟退火算法 模拟退火算法(Simulated Annealing,简称SA算法)是模拟加热熔化的金属的退火过程,来寻找全局最优解的有效方法之一。 模拟退火的基本思想和步骤如下: 设S={s1,s2,…,sn}为所有可能的状态所构成的集合, f:S—R为非负代价函数,即优化问题抽象如下: 寻找s*∈S,使得f(s*)=min f(si) 任意si∈S (1)给定一较高初始温度T,随机产生初始状态S (2)按一定方式,对当前状态作随机扰动,产生一个新的状态S’ S’=S+sign(η).δ 其中δ为给定的步长, η为[-1,1]的随机数
标签: Simulated Annealing 模拟退火算法 模拟
上传时间: 2014-01-02
上传用户:gengxiaochao
用matlab语言编写模拟退火算法,实现0-1被包问题
上传时间: 2015-04-07
上传用户:
本代码包包含一个模拟退火算法的c++程序。此外还有其他一些源码,这在该压缩包中,有一个readme文档,对其进行了详细说明。
上传时间: 2013-12-20
上传用户:helmos
以一个简单的例子说明模拟退火算法的思想。 模拟退火法求函数f(x,y) = 5sin(xy) + x^2 + y^2的最小值,对理解模拟退火算法是一个很好的程序示例。
上传时间: 2015-04-13
上传用户:zhanditian
本程序用模拟退火算法实现了旅行商问题(tsp问题)
上传时间: 2013-12-23
上传用户:海陆空653
模拟退火算法是为了避免求解最优化出现局部极值的问题而提出的算法,保证最终的结果是全局最优的,该matlab源程序能在matlab环境中实现
上传时间: 2014-10-12
上传用户:225588
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
标签: 模拟退火算法
上传时间: 2015-04-24
上传用户:R50974
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
标签: 模拟退火算法
上传时间: 2015-04-24
上传用户:ryb