pid教程,适合初学者,有大量代码,学习资料,MATLAB运用,很好
上传时间: 2015-10-22
上传用户:yuquanjiayuan
用人工控制温度的策略,介绍pid控制器主要参数的意义,和整定pid参数的方法。用仿真实验的结果验证了整定方法的有效性。
标签: pid
上传时间: 2016-03-23
上传用户:AA润锋
对于PID初学者颇有指导,将偏差的比例(Proportion)、积分(Integral)和微分(Differential)通过线性组合构成控制量, 用这一控制量对被控对象进行控制,这样的控制器称 PID 控制器。
标签: PID
上传时间: 2016-04-27
上传用户:547453159
电动舵机(EMA)由于具有结构简单、重量轻、负载特性好和可靠性高等优点,因而在 无人驾驶飞机(UAV)、导弹、航天器等飞行器中得到越来越广泛的应用。 传统 PID 控制以其实时性好、易于实现等特点广泛应用于控制系统,只要正确设定参 数,PID 控制器便可实现其作用,但由于舵机系统存在着非线性、时变性等不确定因素,此 时,PID 的控制效果将难于达到预期的目标。而模糊控制对控制对象的非线性、时变性等具 有较强的适应能力,其灵活性和鲁棒性较好,并且控制简单,在电机控制领域应用非常广 泛。但在模糊控制的系统中很难完全消除稳态误差,一般情况下,控制精度不太理想。 针对上述两种控制器的特点,为了提高舵机位置伺服系统的控制性能,本文设计了一 种模糊自适应 PID 控制器,兼顾了两种控制方法的优点,通过模糊规则进行推理和决策, 在线整定 PID 控制器的三个参数,实验结果表明,该控制器结构简单,效果良好。
上传时间: 2016-04-27
上传用户:547453159
pid控制器的算法和参数整定方法 ,基于遗传算法的pid参数整定和MATLAB仿真
上传时间: 2016-05-30
上传用户:looser辉
常规的pid控制器的算法和参数整定 数字pid参数整定及其仿真
上传时间: 2016-05-30
上传用户:looser辉
倒立摆系统是研究控制理论的一种典型实验装置,具有成本低廉,结构简单物理参数和结构易于调整的优点,是一个具有高阶次、不稳定、多变量、非线性和强耦合特性的不稳定系统。在控制过程中,它能有效地反映诸如稳定性、鲁棒性、随动性以及跟踪等许多控制中的关键问题,是检验各种控制理论的理想模型。迄今人们己经利用经典控制理论、现代控制理论以及各种智能控制理论实现了多种倒立摆系统的控制稳定倒立摆系统的最初研究开始于二十世纪五十年代,麻省理工大学电机工程系设计出单级倒立摆系统这个实验设备。后来在此基础上,人们又进行拓展,产生了各式各样的倒立摆:有悬挂式倒立摆、平行倒立摆、环形倒立摆、平面倒立摆倒立摆的级数有一级、二级、三级、四级乃至多级:倒立摆的运动轨道可以是水平的,也可以是倾斜的:倒立摆系统已成为控制领域中不可或缺的研究设备和验证各种控制策略有效性的实验平台。同时倒立摆研究也具有重要的工程背景:如机器人的站立与行走类似双倒立摆系统:火箭等飞行器的飞行过程中,其姿态的调整类似于倒立摆的平衡。由于倒立摆系统与双足机器人、火箭飞行控制有很大相似性,因此对倒立摆控制机理的研究具有重要的理论和实践意义。而就这两方面而言,从目前的研究情况来看,大部分研究成果又都集中在第面即倒立摆系统的稳定控制的研究早在上个世纪五十年代,国外就开始了倒立摆的研究,我国学者也从80年代初开始倒立摆系统的研究。1966年 Schaefer和 Cannon应用bang-bang控制理论,将一个曲轴稳定于倒置位置,实现了单级倒立摆的稳定控制,在60年代后期,作为一个典型的不稳定严重非线性证例,倒立摆的概念被提出,并将其用于检验控制方法对不稳定、非线性和快速性系统的控制能力,受到世界各国许多科学家的重视,寻找不同的控制方法实现对倒立摆的控制。目前,倒立摆的控制方法可分如下几类
上传时间: 2022-04-05
上传用户:
PID控制器结构清晰,参数可调,适用于各种控制对象,PID控制器的核心思想是针对控制对象的控制需求,建立描述对象动态特性的数学模型,通过PID参数整定实现在比例,微分,积分三个方面参数调整的控制策略来达到最佳系统响应和控制效果
上传时间: 2022-05-12
上传用户:qdxqdxqdxqdx
首先介绍一下原理,其实很简单,磁力对悬浮物的控制,其基本原理是:霍尔传感器在浮子的正下方,当检测到浮子向左运动时,两边的线圈一个吸一个拉,把它推向右;反之如果浮子想右运动,那么两个线圈的电流都反向,总共两组共四个这样的线圈,就可以把浮子限制在二维平面之内了。但是线圈产生的力是比较小的,因此只能够推动浮子在水平面移动,要克服浮子的重力让它悬浮起来,就要在四个线圈下面再加一个大的环形磁铁提供斥力。为了让悬浮更加稳定,我们采用了PID控制的平衡算法,对PID算法的了解有助于我们对整个实验原理的理解,借用网上对PID的一段介绍:在工程实际中,PID控制是应用最为广泛的调节器控制机制。PID控制中得P代表比例,即proportion;I代表积分,即integral;D代表微分,即differential;因此,PID控制,即比例-积分-微分控制。当被控对象的结构和参数不能完全掌握,或者得不到精确的数学模型时,其他的控制方法难以采用,那么控制器的结构和参数必须结合经验和现场调试来决定,在这种情况下采用PID调节最为方便。首先,比例控制是一种最简单的控制方式,就像胡克公式中的比例系数一样,当控制器的输出与输入信号成比例关系,那么就可以得到一个比例系数。其次,积分控制是指控制器的输出与输入的误差信号的积分有关。就如同电路中的电感元件,某个时刻的电压与电流的积分有关。类似的,有时候信号的输出必须综合之前信号的输入,而这种综合往往是求和关系,因此使用积分控制简单易行。最后,微分控制是指控制器的输出与输入信号的微分有关。最简单的微分关系就是速度是位矢的微分。我们在控制悬浮物的平衡时,光知道悬浮物偏离平衡位置的位移从而采用比例控制是不够的,对于同样的偏离位移,悬浮物可能有不同的速度,那么要求我们对悬浮物有不同的处理方法,而恰恰速度是位矢的微分,于是我们可以通过对位移输入数据进行微分操作,来实现对悬浮物的精确实时控制。可见,PID控制器是一种那个动态的控制机制。 以上就是实现下推式磁悬浮的基本原理,借助以上的基本原理,结合一定的软件算法实现,我们就可以对悬浮物进行动态控制。
上传时间: 2022-06-07
上传用户:canderile
针对现有方法的不足,本文从太阳能光伏阵列的输出特性出发,针对光伏阵列本身具有非线性、时变性和无法建立精确的数学模型的特征,以及传统模糊控制与PID控制难以满足精度高、鲁棒性好的要求,提出了一种基于模糊PID控制的最大功率点跟踪控制策略,并采用升压斩波电路(Boost电路)实现MPPT功能本文首先介绍了太阳能光伏发电系统的组成和分类,分析了光伏阵列的工作特性,接着分析了Boost电路在光伏发电系统中的实现,最后概述了太阳能最大功率点跟踪的模糊控制策略中几种控制器的基本原理,利用Matlab/simulink进行仿真,分别搭建了PID控制器、模糊控制器以及模糊PID控制器的模型,将这几种控制器应用于光伏发电系统。仿真结果表明,模糊PID控制方法不仅能快速响应外界环境的变化、有效消除传统模糊控制下最大功率点处的振荡现象,而且弥补了在PID控制下系统调节过渡时间较长的缺点,使光伏系统始终工作在最大功率点,提高了光伏系统的效率。
上传时间: 2022-06-21
上传用户: