虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

数据线

  • DS18B20是美国DALLAS公司继DS1820之后推出的增强型单总线数字温度传感器。它在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进

    DS18B20是美国DALLAS公司继DS1820之后推出的增强型单总线数字温度传感器。它在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1. DS18B20的新性能 (1) 可用数据线供电,电压范围:3.0~5.5V; (2) 测温范围:-55~+125℃,在-10~+85℃时精度为±0.5℃; (3) 可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃; (4) 12位分辨率时最多在750ms内把温度值转换为数字; (5) 负压特性:电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 (6) 温度转换时间由DS1820的2s降为750ms,且灵敏度大为提高,在逐渐升温的水中与精度为±0.5℃的温度计几乎同步,且回复性很好; (7) 每个芯片唯一编码,支持联网寻址,零功耗等待。

    标签: 1820 DS DALLAS 18B

    上传时间: 2013-12-27

    上传用户:baitouyu

  • 上下限温度报警

    DS18B20作为单片机AT89C51的外部信号源,把所采集到的温度转换为数字信号,通过I/O接口传给AT89C51,AT89C51启动ROM内的控制程序驱动液晶模块RT1602C通过I/O口和数据线(单片机和RT1602C的接口)把数据线送给RT1602C,把采集到的温度实时显示出来。

    标签: 温度报警

    上传时间: 2016-03-31

    上传用户:BaconC

  • usb驱动

    usb驱动适用于windows数据线的驱动程序

    标签: usb驱动

    上传时间: 2019-01-06

    上传用户:bglwlcc

  • IIC驱动

    基于51单片机的IIC程序,数据线与时钟线引脚可以自行修改

    标签: IIC 驱动

    上传时间: 2019-02-28

    上传用户:1234_4321

  • HDMI1.4规范中文版.pdf

    HDMI 1.4版数据线将增加一条数据通道,支持高速双向通讯。支持该功能的互连设备能够通过百兆以太网发送和接收数据,可满足任何基于IP的应用。HDMI以太网通道将允许基于互联网的HDMI设备和其它HDMI设备共享互联网接入,无需另接一条以太网线。

    标签: hdmi

    上传时间: 2021-12-21

    上传用户:

  • DS1302 DS3231 DS1307实时时钟模块

    DS1302 是 DALLAS 公司推出的涓流充电时钟芯用 内含有一个实时时钟/日历和31字节静态RAM,通过简单的串行接口与单片机进行通信。实时时钟/日历电路提供秒、分、时、日、日期、月、年的信息,每月的天数和闰年的天数可自动调整,时钟操作可通过AM/PM指示决定采用24或12 小时格式。DS1302 与单片机之间能简单地采用同步串行的方式进行通信,仅需用到三个口线: (DRES(复位),(2)I/O(数据线), (B)SCLK(事行时钟)。时钟/RAM的读/写数据以会个字节或多达31个字节的字符组方式通信。DS1302 工作时功耗很低,保持数据和时钟信息时功率小于1mW。 DS1302是由DS1202 改进而来,增加了以下的特性:双电源管脚用于主电源和备份电源供应,Vcc!为可编程涓流充电电源,附加七个字节存储器。它广泛应用于电话、传真、便携式仪器以及电池供电的仪器仪表等产品领域。

    标签: ds1302 ds3231 ds1307 时钟模块

    上传时间: 2022-01-06

    上传用户:zhanglei193

  • 一博科技PCB设计指导书VER1.0. 66页

    一博科技PCB设计指导书VER1.0. 66页常见信号介绍  1.1 数字信号  1.1.1 CPU 常称处理器,系统通过数据总线、地址总线、控制总线实现处理器、控制芯片、存 储器之间的数据交换。  地址总线:ADD* (如:ADDR1)  数据总线:D* (如:SDDATA0)  控制总线:读写信号(如:WE_N),片选信号(如:SDCS0_N),地址行列选择信 号(如:SDRAS_N),时钟信号(如:CLK),时钟使能信号(如:SDCKE)等。  与CPU对应的存储器是SDRAM,以及速率较高的DDR存储器:  SDRAM:是目前主推的PC100和PC133规范所广泛使用的内存类型,它的带宽为64位, 支持3.3V电压的LVTTL,目前产品的最高速度可达5ns。它与CPU使用相同的时钟频 率进行数据交换,它的工作频率是与CPU的外频同步的,不存在延迟或等待时间。 SDRAM与时钟完全同步。  DDR:速率比SDRAM高的内存器,可达到800M,它在时钟触发沿的上、下沿都能进行 数据传输,所以即使在133MHz的总线频率下的带宽也能达到2.128GB/s。它的地址 与其它控制界面与SDRAM相同,支持2.5V/1.8V的SSTL2标准. 阻抗控制在50Ω±10 %. 利用时钟的边缘进行数据传送的,速率是SDRAM的两倍. 其时钟是采用差分方 式。  1.1.2 PCI  PCI总线:PCI总线是一种高速的、32/64位的多地址/数据线,用于控制器件、外围 接口、处理器/存储系统之间进行互联。PCI 的信号定义包括两部份(如下图):必 须的(左半部份)与可选的(右半部份)。其中“# ”代表低电平有效。

    标签: pcb设计

    上传时间: 2022-02-06

    上传用户:得之我幸78

  • 无线充电设计攻略大合集

    无线充电设计攻略大合集电池寿命仍是目前移动产品的最大障碍,几乎没有一款智能 手机能够在高强度的使用下坚持一整天,所以我们需要经常为其 充电。显然,随时携带数据线和充电器是非常痛苦的一件事,那 么有没有什么解决方案至少让充电不那么麻烦?无线充电显然 是最具潜力、也最容易实现的。 继苹果可穿戴新品 iwatch 开始采用无线充电技术后,未来, 相信无线充电的风潮会被真正地带动起来,眼下,众多厂商也是 纷纷加码布局,力拓无线充电的市场。 鉴此,电子发烧友网特别策划《一周回顾系列白皮书之无线 充电技术方案》,以期在工程师设计较为常见的无线充电方案中 提供参考价值

    标签: 无线充电

    上传时间: 2022-02-09

    上传用户:

  • 一种用于手机的无线充电系统的设计

    随着智能手机屏幕越来越大,功能越来越多,耗电量越来越大,手机充电也越来越频繁。杂乱的数据线和频繁的插拔使人们对充电过程感到不胜其烦,不仅如此,频繁的插拔还容易引起手机充电接口的损坏,因此,人们需要一种更加便捷可靠的充电方法。手机无线充电技术是一种依靠空间磁场耦合将供电端的电能传输给手机电池从而对其进行充电的技术,这是一种全新的充电方法,克服了传统手机充电方法的弊端,可以使充电更加灵活、方便、安全。这种新的充电方法具有广阔的发展和应用前景,日前已受到了相关研究机构和企业的高度关注,且已有一些相关产品面市。本文通过对无线充电技术的原理、电路、通信及耦合机构等方面进行研究,设计了一种用于手机的无线充电系统。本文所做的研究工作对无线充电技术的推广和应用有一定的促进作用,能为未来无线充电系统的设计提供一些参考和借鉴本文的主要研究工作有:闸述了无线充电系统的工作原理及系统的基本结构,分析了手机无线充电系统的需求,并提出了系统的主要设计要求:设计了系统的主电路和谐振电路,完成了控制芯片的选型,并阐述了系统的控制方法和流程;为了使接收端可以将其功率需求及充电状态等信息反馈回发射端,以实现更准确的控制,设计了从接收端到发射端的单向通信信号调制电路以及相关的数据包时序、格式和编码方式等,并用 Simulink对信号调制电路进行仿真,以验证信号调制电路的调制效果;为了克服传统的绕线式稠合机构成本高、制作和装配工艺复杂、一致性不好等缺点,减轻耦合机构重量,并提高其可靠性,设计了一种PCB耦合机构:为了验证所设计的手机无线充电系统的性能,搭建了一个实验系统,实验结果表明所设计的系统满足一般的工程要求。关键词:手机无线充电,磁场耦合,单向通信,PCB耦合机构

    标签: 无线充电

    上传时间: 2022-03-30

    上传用户:zhanglei193

  • CAN、I2S、I2C、SPI、SSP总线的介绍和比较

    计算机基本知识、SPI总线说明串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口,Motorola公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68系列MCU,SPI用于CPU与各种外围器件进行全双工、同步串行通讯。SPI可以同时发出和接收串行数据。它只需四条线就可以完成MCU与各种外围器件的通讯,这四条线是:串行时钟线(CSK)、主机输入/从机输出数据线(MISO)主机输出/从机输入数据线(MOSD)、低电平有效从机选择线es。这些外围器件可以是简单的TTL移位寄存器,复杂的LCD显示驱动器,A/D.D/A转换子系统或其他的MCU,当SPI工作时,在移位寄存器中的数据逐位从输出引脚(MOSI)输出(高位在前),同时从输入引脚(MISO)接收的数据逐位移到移位寄存器(高位在前),发送一个字节后,从另一个外围器件接收的字节数据进入移位寄存器中。主SPI的时钟信号(SCK)使传输同步,其典型系统框图如下图所示。

    标签: can i2s i2c spi ssp

    上传时间: 2022-06-19

    上传用户: