基于MSP430单片机TimerB的数字->模拟信号转换的设计.利用MSP430定时器B产生PWM,然后再通过RC滤波,得到直流或交流电压信号.此方法成本低廉,可靠性高,易于使用.
上传时间: 2013-11-26
上传用户:lanjisu111
简易数字频率计题解.( 1997年 B 题 ) 编写与讲解人:田良(东南大学无线电系,2003年3月12日) 一)任务 设计并制作一台数字显示的简易频率计。 (二)要求 1.基本要求 (1)频率测量 a.测量范围 信号:方波、正弦波 幅度:0.5V~5V[注] 频率:1Hz~1MHz b.测试误差≤0.1% (2)周期测量 a.测量范围 信号:方波、正弦波 幅度:0.5V~5V[注] 频率:1Hz~1MHz b.测试误差≤0.1% 3) 脉冲宽度测量 a.测量范围 信号:脉冲波 幅度:0.5V~5V[注] 脉冲宽度≥100μs b.测试误差≤0.1% (4)显示器 十进制数字显示,显示刷新时间1~10秒 连续可调,对上述三种测量功能分别采用不同颜色的 发光二极管指示。 (5)具有自校功能,时标信号频率为1MHz。 (6)自行设计并制作满足本设计任务要求的稳压电源
上传时间: 2013-12-26
上传用户:xg262122
基于MSP430系列单片机的软件实时时钟(RTC)代码,使用定时器B为中断源,时间变量使用字符型变量储存,便于直接输出数字
上传时间: 2013-12-20
上传用户:hzy5825468
本文用VHDL在CPLD器件上实现一种8 b数字频率计测频系统,能够用十进制数码显示被测信号的频率,不仅能够测量正弦波、方波和三角波等信号的频率,而且还能对其他多种物理量进行测量。具有体积小、可靠性高、功耗低的特点。
上传时间: 2013-12-18
上传用户:sy_jiadeyi
简易数字频率计--描述了97年电子设计大赛中B题的一些思路和方法。
上传时间: 2013-11-28
上传用户:xaijhqx
PWM控制电机,用PWM控制电机,熟悉定时器Timer A/B的编程方法。用Timer A作为脉宽调制信号产生的定时器.了一个函数F_Pwm(int a,int b) 用于PWM设置,传入两个参数第一个用于频率设置,第二个用于占空比设置。
上传时间: 2015-10-10
上传用户:athjac
--文件名:mine4.vhd。 --功能:实现4种常见波形正弦、三角、锯齿、方波(A、B)的频率、幅度可控输出(方波 --A的占空比也是可控的),可以存储任意波形特征数据并能重现该波形,还可完成 --各种波形的线形叠加输出。 --说明: SSS(前三位)和SW信号控制4种常见波形种哪种波形输出。4种波形的频率、 --幅度(基准幅度A)的调节均是通过up、down、set按键和4个BCD码置入器以及一 --个置入档位控制信号(ss)完成的(AMP的调节范围是0~5V,调节量阶为1/51V)。 --其中方波的幅度还可通过u0、d0调节输出数据的归一化幅值(AMP0)进行进一步 --细调(调节量阶为1/(51*255)V)。方波A的占空比通过zu、zp按键调节(调节 --量阶1/64*T)。系统采用内部存储器——RAM实现任意输入波形的存储,程序只支 --持键盘式波形特征参数置入存储,posting 为进入任意波置入(set)、清除(clr)状态 --控制信号,SSS控制存储波形的输出。P180为预留端口,
上传时间: 2017-02-09
上传用户:z1191176801
便携式B型超声诊断仪具有无创伤、简便易行、相对价廉等优势,在临床中越来越得到广泛的应用。它将超声波技术、微电子技术、计算机技术、机械设计与制造及生物医学工程等技术融合在一起。开展该课题的研究对提高临床诊断能力和促进我国医疗事业的发展具有重要的意义。 便携式B型超声诊断仪由人机交互系统、探头、成像系统、显示系统构成。其基本工作过程是:首先人机交互系统接收到用户通过键盘或鼠标发出的命令,然后成像系统根据命令控制探头发射超声波,并对回波信号处理、合成图像,最后通过显示系统完成图像的显示。 成像系统作为便携式B型超声诊断仪的核心对图像质量有决定性影响,但以前研制的便携式B型超声诊断仪的成像系统在三个方面存在不足:第一、采用的是单片机控制步进电机,控制精度不高,导致成像系统采样不精确;第二、采用的数字扫描变换算法太粗糙,影响超声图像的分辨率;第三、它的CPU多采用的是51系列单片机,测量速度太慢,同时也不便于系统升级和扩展。 针对以上不足,提出了基于FPGA的B型超声成像系统解决方案,采用Altera公司的EP2C5Q208C8芯片实现了步进电机步距角的细分,使电机旋转更匀速,提高了采样精度;提出并采用DSTI-ULA算法(Uniform Ladder Algorithm based on Double Sample and Trilinear Interotation)在FPGA内实现数字扫描变换,提高了图像分辨率;人机交互系统采用S3C2410-AL作为CPU,改善了测量速度和系统的扩展性。 通过对系统硬件电路的设计、制作,软件的编写、调试,结果表明,本文所设计的便携式B型超声成像系统图像分辨率高、测量速度快、体积小、操作方便。本文所设计的便携式B型超声诊断仪可在野外作业和抢险(诸如地震、抗洪)中发挥作用,同时也可在乡村诊所中完成对相关疾病的诊断工作。
上传时间: 2013-05-18
上传用户:helmos
超声理论与技术的快速发展,使超声设备不断更新,超声检查已成为预测和评价疾病及其治疗结果不可缺少的重要方法。超声诊断技术不仅具有安全、方便、无损、廉价等优点,其优越性还在于它选用诊断参数的多样性及其在工程上实现的灵活性。 全数字B超诊断仪基于嵌入式ARM9+FPGA硬件平台、LINUX嵌入式操作系统,是一种新型的、操作方便的、技术含量高的机型。它具有现有黑白B超的基本功能,能够对超声回波数据进行灵活的处理,从而使操作更加方便,图象质量进一步提高,并为远程医疗、图像存储、拷贝等打下基础,是一种很有发展前景、未来市场的主打产品。全数字B型超声诊断仪的基本技术特点是用数字硬件电路来实现数据量极其庞大的超声信息的实时处理,它的实现主要倚重于FPGA技术。现在FPGA已经成为多种数字信号处理(DSP)应用的强有力解决方案。硬件和软件设计者可以利用可编程逻辑开发各种DSP应用解决方案。可编程解决方案可以更好地适应快速变化的标准、协议和性能需求。 本论文首先阐述了医疗仪器发展现状和嵌入式计算机体系结构及发展状况,提出了课题研究内容和目标。然后从B超诊断原理及全数字B超诊断仪设计入手深入分析了B型超声诊断仪的系统的硬件体系机构。对系统的总体框架和ARM模块设计做了描述后,接着分析了超声信号进行数字化处理的各个子模块、可编程逻辑器件的结构特点、编程原理、设计流程以及ARM处理模块和FPGA模块的主要通讯接口。接着,本论文介绍了基于ARM9硬件平台的LINUX嵌入式操作系统的移植和设备驱动的开发,详细描述了B型超声诊断仪的软件环境的架构及其设备驱动的详细设计。最后对整个系统的功能和特点进行了总结和展望。
上传时间: 2013-05-28
上传用户:sssnaxie
2012TI杯陕西赛题H题,2012TI杯陕西赛题B题--频率补偿电路.
上传时间: 2013-10-07
上传用户:ysystc670