基于人工神经网络ANN和邻近支撑向量机(PSVM)的直齿圆锥齿轮箱故障诊断这是一份非常不错的资料,欢迎下载,希望对您有帮助!
标签: 人工神经网络
上传时间: 2021-12-19
上传用户:
这是个写字机固件,可以支持舵机,可以直接烧录的
标签: 写字机固件
上传时间: 2022-06-21
上传用户:qdxqdxqdxqdx
电机是现代生产中的重要电气设备,电机的故障会对生产造成重大影响,因此需要监测电机的运行状态。同时,不断提高的环保标准要求控制电机的噪声。测试和分析电机的振动为电机的故障诊断和电机的噪声控制提供了途径,因此有必要建立一个电机振动测试分析系统。 过去20多年来,虚拟仪器技术取得了长足发展,在工程测试等领域得到了广泛的应用。相比于传统仪器,虚拟仪器技术具有性能高,扩展性强等诸多优势。LabVIEW是虚拟仪器软件开发平台中最常用的一个。 本文在虚拟仪器的基础上开发了电机振动测试分析系统,主要内容包括以下几个方面: 1.电机振动测试分析平台的建立,以LabVIEW为软件开发平台,配合数据采集卡,加速度传感器等硬件设备建立了电机振动信号采集与处理的虚拟仪器系统,完成振动信号的采集、显示、处理、数据管理等一系列功能; 2.电机振动信号处理方法的研究,深入分析了傅里叶变换、时频分析、小波分析等在电机振动信号处理中的优缺点,着重研究了独立分量分析等新技术在电机内部振动信号处理上的应用,针对电机振动的特性,给出了各种信号处理方法的参数优化: 3.电机故障诊断的研究,针对电机故障特征量的提取和选择提出了作者自己的见解,建立了基于振动的最小二乘支持向量机电机故障诊断,实例证明了支持向量机在电机故障诊断上的有效性; 4.针对电机故障诊断中故障样本不易获得的特点,提出了基于支持向量数据描述的多层分类器,是一种较有应用价值的新方法。
上传时间: 2013-06-24
上传用户:黄华强
随着电机在工业、农业等领域的广泛应用,如何测试、分析和抑制电机振动和噪声,越来越受到人们的广泛关注。虚拟仪器技术,相比于传统仪器拥有性能高、扩展性强等优点,在工程测试等领域得到越来越广泛的应用。因此,结合虚拟仪器技术,建立电机噪声和振动的测试分析系统是一种可行的解决途径。 本文将虚拟仪器技术应用于电机的噪声和振动问题,建立了基于虚拟仪器的电机噪声振动测试分析系统。全文主要研究工作分为三部分:前两部分分别研究了系统的硬件和软件组成,建立了完整的硬件和软件系统;第三部分进行了噪声振动实验研究,验证了系统的正确性和有效性。本文的主要研究内容如下: 1.硬件部分。探讨了系统的硬件组成,建立了以传感器、信号调理电路和数据采集卡为核心的测试系统。系统硬件部分是正确采集电机噪声和振动信号的关键,是测试分析的基础。 2.软件部分。用LabVIEw虚拟仪器编程语言完成了软件部分的设计,实现了信号采集、显示、处理、诊断、打印报告等一系列功能。针对电机噪声振动的复杂性,建立了以快速傅里叶变换、功率谱函数分析、分数倍频谱分析、小波分析等信号处理方法为核心的信号分析处理功能,并用最小二乘支持向量机实现了电机故障诊断功能。 3.实验研究。实验验证了系统的信号采集、信号分析和故障诊断的正确性。构造三类电机故障,实验研究了采用最小二乘支持向量机进行故障诊断的有效性。 在总结全文的基础上,提出了该电机噪声和振动测试分析系统有待深入研究的若干问题。
上传时间: 2013-07-22
上传用户:hainan_256
开发与利用新能源是我国21世纪的重要能源战略。风能是一种“取之不尽,用之不竭”、环境友好的可持续性能源,已受到了越来越广泛的重视,并成为发展最快的新型能源。但是风电具有间歇性和随机性的固有缺点,随着大量的风力发电接入电网,势必会对电力系统的安全、稳定运行以及保证电能质量带来严峻挑战,从而限制风力发电的发展规模。风电场短期风速和发电功率预测是解决该问题的有效途径之一。中国的风电场大都是集中的、大容量的风电场,而且处于电网建设相对比较薄弱的地区,因此,中国更需要进行风电场短期风速和发电功率预测的研究,而发电功率的预测主要源自风速的预测。在此背景下,选择风电场短期风速预测方法作为主要研究内容,主要包括以下几个方面: 首先运用统计学方法来分析风速的时间序列特性及其预测方法和应用特点,说明现实中的风速序列具有很强的非平稳性。然后运用具有“数字显微镜”之美誉的小波变换来分析历史纪录的风速数据,通过运用二进正交小波变换Mallat算法对香港和河西走廊地区风速序列进行分解和重构,分离出风速序列中的低频信息和高频信息。对Mallat算法分解后的信号,运用最小二乘支持向量机分别进行向前一步预测,然后再把各预测结果合成,得到预测值。建立了基于小波变换和最小二乘支持向量机的短期风速预测方法。应用Matlab对该算法进行了仿真,仿真试验表明,小波变换是非平稳风速序列时频分析的有效工具,对风速序列的高频和低频信息起到很好的分离作用;最小二乘支持向量机的应用提高了预测的准确性。应用香港地区与河西走廊地区小时平均风速历史数据,验证了方法的有效性。
上传时间: 2013-04-24
上传用户:xg262122
心音信号是人体最重要的生理信号之一,包含心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量生理病理信息。心音信号分析与识别是了解心脏和血管状态的一种不可缺少的手段。本文针对目前该研究领域中存在的分析方法问题和分类识别技术难点展开了深入的研究,内容涉及心音构成的分析、心音信号特征向量的提取、正常心音信号(NM)和房颤(AF)、主动脉回流(AR)、主动脉狭窄(AS)、二尖瓣回流(MR)4种心脏杂音信号的分类识别。本文的工作内容包括以下5个方面: a)心音信号采集与预处理。本文采用自行研制的带有录音机功能的听诊器实现对心音信号的采集。通过对心音信号噪声分析,选用小波降噪作为心音信号的滤波方法。根据实验分析,选择Donoho阈值函数结合多级阈值的方法作为心音信号预处理方案。 b)心音信号时频分析方法。文中采用5种时频分析方法分别对心音信号进行了时频谱特性分析,结果表明:不同的时频分析方法与待分析心音信号的特性有密切关系,即需要在小的交叉项干扰与高的时频分辨率之间作综合的考虑。鉴于此,本文提出了一种自适应锥形核时频(ATF)分析方法,通过实验验证该分布能较好地反映心音信号的时频结构,其性能优于一般锥形核分布(CKD)以及Choi-Williams分布(CWD)、谱图(SPEC)等固定核时频分析方法,从而选择自应锥形核时频分析方法进行心音信号分析。 c)心音信号特征向量提取。根据对3M Littmann() Stethoscopes[31]数据库中标准心音信号的时频分析结果,提取8组特征数据,通过Fihser降维处理方法提取出了实现分类可视化,且最易于分类的心音信号的2维特征向量,作为心音信号分类的特征向量。 d)心音信号分类方法。根据心音信号特征向量组成的散点图,研究了支持向量机核函数、多分类支持向量机的选取方法,同时,基于分类的目的 性和可信性,本文提出以分类精度最大为判断准则的核函数参数与松弛变量的优化方法,建立了心音信号分类的支持向量机模型,选取标准数据库中NM、AF、AR、AS、MR每类心音信号的80组2维特征向量中每类60组数据作为支持向量机的学习样本,对余下的每类20组数据进行测试,得到每类的分类精度(Ar)均为100%,同时对临床上采集的与上述4种同类心脏杂音信号和正常心音信号中每类24个心动周期进行分类实测,分类精度分别为:NM、AF、MR的分类精度均为100%,而AR、AS均为95.83%,验证了该方法的分类有效性。 e)心音信号分析与识别的软件系统。本文以MATLAB语言的可视化功能实现了心音信号分析与识别的软件运行平台构建,可完成对心音信号的读取、预处理,绘制时-频、能量特性的三维图及两维等高线图;同时,利用MATLAB与EXCEL的动态链接,实现对心音信号分析数据的存储以及统计功能;最后,通过对心音信号2维特征向量的分析,实现心音信号的自动识别功能。 本文的研究特色主要体现在心音信号特征向量提取的方法以及多分类支持向量机模型的建立两方面。 综上所述,本文从理论与实践两方面对心音信号进行了深入的研究,主要是采用自适应锥形核时频分析方法提取心音信号特征向量,根据心音信号特征向量组成的散点图,建立心音信号分类的支持向量机模型,并对正常心音信号和4种心脏杂音信号进行了分类研究,取得了较为满意的分类结果,但由于用于分类的心脏杂音信号种类及数据量尚不足,因此,今后的工作重点是采集更多种类的心脏杂音信号,进一步提高心音信号分类精度,使本文研究成果能最终应用于临床心脏量化听诊。 关键词:心音信号,小波降噪,非平稳信号,心脏杂音,信号处理,时频分析,自适应,支持向量机
上传时间: 2013-04-24
上传用户:weixiao99
船舶自动操舵仪又称自动舵,用来保持船舶在给定航向或航迹上航行,是船舶操纵的关键设备。船舶自动舵尚没有专用的故障诊断系统,当前的维修方法不能满足快速保障和应急保障的需要。本文结合某型自动舵微机通道故障诊断科研项目,重点论述某型自动舵数字控制系统的故障诊断设计与实现,研究了基于模糊推理的船舶自动舵故障诊断专家系统和基于支持向量机的船舶自动舵模拟电路故障诊断方法。 对某型自动舵充分调研,在了解系统软、硬件的总体技术要求和指标的基础上,建立检测对象的数学模型和物理模型。确定故障检测的对象特点,为系统故障仿真、参数辨识做好准备,并为后续的故障检测、诊断方法研究提供了参考。 结合某型自动舵数字控制系统实际情况,确定其故障诊断系统采用分层递阶结构。系统底层为基于嵌入式微处理器的信号检测单元,负责获取微机通道的总线控制权以及信号预处理;系统中间层为通讯子系统,负责对底层多个检测单元信息集中传送;系统顶层为故障诊断和显示子系统,负责对微机通道的信息进行综合评价,得出最终诊断结论。 船舶自动舵系统结构繁杂,很多故障很难用精确的公式将它表示出来,提出了基于模糊推理的船舶自动舵故障诊断专家系统,提高了自动舵故障诊断准确性。该系统将模糊数学、模糊诊断原理及专家经验相结合,采用模糊产生式知识表示法,确定模糊关系矩阵及语义距离,设计相关硬件平台,实现了船舶自动舵故障诊断模糊专家系统的各个功能模块。 为解决船舶自动舵模拟电路故障诊断复杂多样难于辨识的问题,提出了基于支持向量机的故障诊断方法。该方法通过电路仿真分析,给出了各故障模式下电压频率响应,提取具有代表性的故障特征,建立了以支持向量机为基础的模拟电路故障诊断模型。实验结果证明,该方法可有效诊断模拟电路中的元件故障,且对于元件容差引起的故障诊断模型的不确定性具有较强的鲁棒性,满足非线性电路的故障诊断要求。
上传时间: 2013-04-24
上传用户:evil
嵌入式人脸识别系统建立在嵌入式操作系统和嵌入式硬件系统平台之上,具有起点高、概念新、实用性强等特点。它涉及嵌入式硬件设计、嵌入式操作系统应用开发、人脸识别算法等领域的研究;嵌入式人脸识别系统携带方便、安装快捷、机动性强,可广泛应用于各类门禁系统、户外机动布控的实时监测等特殊场合,因此对嵌入式人脸识别的研究工作具有突出的理论意义和广泛的应用前景。 本文是上海市经委创新研究项目《射频识别RFID系统-自动识别和记录人群的身份》(编号:04-11-2)与上海市科委AM基金项目《基于ARM和RFID芯片的自组织安全监控系统的研制》(编号:0512)的主要研究内容之一。论文从构建自动人脸识别系统所需解决的若干关键问题入手,重点探讨了基于嵌入式ARM微处理器的实时人脸检测、关键特征定位、高效的人脸特征描述、鲁棒的人脸识别分类器及自动人脸识别系统设计等问题的研究。论文的主要工作和创新点表现在以下方面: 1实现了结合肤色校验的Haar特征级联分类器嵌入式实时人脸检测,提出了基于人脸约束的人眼Haar特征RSVM级联分类器人眼检测算法和基于遮罩掩磨与椭圆拟合的瞳孔定位算法。 复杂背景中的人脸检测是自动人脸识别系统首先要解决的关键问题,通过对基于肤色模型和基于Haar特征级联强分类器的人脸检测算法的分析研究,综合两个算法的优点,提出了基于肤色模型校验和Haar特征级联强分类器的嵌入式实时人脸检测算法。实验结果表明,该算法不仅解决了复杂背景中的类肤色和类人脸结构问题,而且具有较高的检测率和较快的检测速度,同时对光照、尺度等变化条件下的人脸检测也具有较强的鲁棒性。 人眼检测与瞳孔定位在人脸归一化和有效人脸特征抽取等方面起着非常重要的作用,为了快速检测人眼并精确定位人眼瞳孔中心,论文提出了基于人脸约束的人眼Haar特征RSVM级联分类器人眼检测算法和基于遮罩掩磨与椭圆拟合的瞳孔定位算法,首先利用人眼检测分类器在人脸区域内完成对人眼位置的检测,然后通过对检测到的人眼进行遮罩掩磨、简单图像形态学变换及椭圆拟合实现瞳孔中心的精确定位。测试结果表明该算法只需几百毫秒便能完成人眼检测与瞳孔中心定位整个过程,在保证检测速度较快的同时,还能确保较高的定位精度。 2 针对传统线性判别分析法存在的小样本问题(sss),通过调整Fisher判别准则,实现了自适应线性判别分析算法及相应的人脸识别方法人脸识别中的小样本问题使线性判别分析算法的类内散布矩阵发生严重退化,导致问题无法求解。本文在人脸识别小样本问题的基础上,通过调整Fisher判别准则,利用类间散布矩阵的补空间巧妙地避开类内散布矩阵的求逆运算,通过训练集每类样本的样本数信息自适应改变调整参数,实现了自适应线性判别分析算法,实验结果表明,该算法能有效解决人脸识别中的小样本问题。 3 提出了基于有效人脸区域的Gabor特征抽取算法,有效地解决了Gabor特征抽取维数过高的问题。 Gabor小波对图像的光照、尺度变化具有较强鲁棒性,是一种良好的人脸特征表征方法。但维数过高的Gabor特征造成应用系统的维数灾难,为解决Gabor特征的维数灾难问题,论文第四章提出了基于有效人脸区域的Gabor特征抽取算法,该算法不仅有效地降低了人脸特征向量维数,缩小了人脸特征库的规模,同时降低了核心算法的时间和空间复杂度,而且具有与传统Gabor特征抽取算法同样的鲁棒性。 4 结合有效人脸区域的Gabor特征抽取、自适应线性判别分析算法和基于支持向量机分类策略,提出并实现了基于支持向量机的嵌入式人脸识别和嵌入式人像比对系统支持向量机通过引入核技巧对训练样本进行学习构造最小化错分风险的最优分类超平面,不仅具有强大的非线性和高维处理能力,而且具有更强的泛化能力。本文研究了支持向量机的多类分类策略和训练方法,并结合论文中提出的基于有效人脸区域的Gabor特征提取算法、自适应线性判别分析算法,首次在基于Windows CE操作系统的嵌入式ARM平台中实现了具有较强鲁棒性的嵌入式自动人脸识别系统和嵌入式人像比对系统。 5 提出并初步实现了基于客户机/服务器结构无线网络模型的远距离人脸识别方案为解决嵌入式人脸识别系统在海量人脸库中进行识别的难题,论文提出并初步实现了基于客户机/服务器结构无线网络模型的嵌入式远距离人脸识别方案。 客户机(嵌入式平台)完成对人脸图像的检测、归一化处理和人脸特征提取,然后通过无线网络将提取后的人脸特征数据传输到服务器端,由服务器在海量人脸库中完成人脸识别,并将识别后的结果通过无线网络传输到客户机显示输出,从而实现基于客户机/服务器无线网络模型的嵌入式远距离人脸识别方案。 6 结合我们开发的基于ARM的嵌入式自动人脸识别系统和嵌入式人像比对系统,从系统设计的角度探讨了在嵌入式系统中进行人脸识别应用设计的思路及应该注意的问题虽然嵌入式人脸识别系统的性能很大程度上取决于高效的人脸特征描述和鲁棒的人脸识别核心算法。但是,嵌入式系统的设计思想对嵌入式人脸识别系统的性能影响同样值得重视。本文第六章重点阐述了嵌入式自动人脸识别应用系统的设计思路,并结合我们自主开发的嵌入式自动人脸识别系统和嵌入式人像比对系统从系统设计的角度探讨了嵌入式人脸识别应用系统设计中应该注意的关键技术问题。 结合本文提出的算法我们在PC上完成对人脸识别分类器的训练,然后在嵌入式ARM开发平台上实现了嵌入式自动人脸识别、嵌入式人像比对两个便携式人员身份认证系统,经测试运行效果良好。所提出的人脸识别算法不仅具有一定的理论参考价值,而且对于嵌入式系统应用开发、AFR应用系统开发也具有一定的借鉴意义。
上传时间: 2013-05-18
上传用户:我们的船长
随着多媒体技术的发展,数字图像处理已经成为众多应用系统的核心和基础。它的发展主要依赖于两个性质不同、自成体系但又紧密相关的研究领域:图像处理算法及其相应的电路实现。图像处理系统的硬件实现—般有三种方式:专用的图像处理器件集成芯片(Application Specific Integrated Circuit)、数字信号处理器(Digital Signal Process)和现场可编程门阵列(Field Programmable Gate Array)以及相关电路组成。它们可以实时高速完成各种图像处理算法。图像处理中,低层的图像预处理的数据量很大,要求处理速度快,但运算结果相对比较简单。相对于其他两种方式,基于FPGA的图像处理方式的系统更适合于图像的预处理。本文设计了—种基于FPGA的小波域图像去噪系统。首先,阐述了基于小波变换的图像去噪算法原理,重点讨论了小波邻域阈值(NeighShrink)去噪算法,并给出了该算法相应的Matlab 仿真;然后,为了改进邻域阈值去噪算法中对每个分解子带都采用相同邻域和阈值的缺点,本文提出了基于最小二乘支持向量机(LS-SVM)分类的邻域阈值去噪算法和以斯坦无偏估计 (SURE)为准则同时结合小波系数尺度间关系的邻域阈值去噪算法。经Matlab实验表明,相比于其他几种经典算法,本文提出的两种改进算法在滤除噪声的同时能更好地保护图像细节,并在较高噪声情况下能获得更高的峰值信噪比。在此基础上本文将提出的改进小波邻域阈值去噪算法进行了相应的简化,以满足低噪声处理要求且易于在FPGA上实现;最后,给出了基于 FPGA的小波邻域阈值去噪系统的总体结构和FPGA内部各功能模块的具体实现方案,包括二维离散小波变换模块、二维离散小波逆变换模块、SDRAM存储器控制模块、去噪计算模块和系统核心控制模块,并对各个系统模块和整体进行了仿真验证,结果表明本文设计的基于FPGA 的小波邻域阈值去噪系统能满足实际的图像处理要求,具有一定的理论和实际应用价值。关键词:图像处理系统,FPGA,图像去噪算法,小波变换
上传时间: 2013-05-16
上传用户:450976175
由于模拟电路的多样性、非线性和离散性等特点,模拟电路的故障诊断呈现复杂、难以辨识等问题。针对已有方法的数据不平衡,提出了一种支持向量机集成的故障诊断方法。使用小波变换方法提取特征向量,在多类别支持向量机的基础上,设计了模拟电路的最小二乘支持向量机预测模型,实现了对模拟电路的状态的故障预测。将该方法应用于Sallen-Key带通电路进行故障预测试验,结果表明,该方法比单一支持向量机、径向基神经网络、BP神经网络和APSVM有更好的分类和泛化性能,故障诊断准确率更高。
上传时间: 2013-10-31
上传用户:417313137