本文主要研究了一种比较简单的正弦输出的逆变器的设计。本设计采用全桥逆变电路和用推挽升压的方式获得逆变器的直流输入电压的设计方法来获得较大的输出功率和较高的功率因数.在直流升压过程中用PWM集成控制器输出相位相反具有一定占空比的两高频脉冲电压来控制开关管的导通与关断,进而控制推挽升压变压器的输出直流电压,再利用SPWM调制信号控制逆变器开关管的导通与关断,再用LC滤波滤掉逆变器输出高频部分,得到正弦波形,最后利用保护控制电路使逆变输出一个稳定的满足要求的交流波形。
上传时间: 2013-10-20
上传用户:acwme
38V/100A可直接并联大功率AC/DC变换器 随着电力电子技术的发展,电源技术被广泛应用于计算机、工业仪器仪表、军事、航天等领域,涉及到国民经济各行各业。特别是近年来,随着IGBT的广泛应用,开关电源向更大功率方向发展。研制各种各样的大功率,高性能的开关电源成为趋势。某电源系统要求输入电压为AC220V,输出电压为DC38V,输出电流为100A,输出电压低纹波,功率因数>0.9,必要时多台电源可以直接并联使用,并联时的负载不均衡度<5%。 设计采用了AC/DC/AC/DC变换方案。一次整流后的直流电压,经过有源功率因数校正环节以提高系统的功率因数,再经半桥变换电路逆变后,由高频变压器隔离降压,最后整流输出直流电压。系统的主要环节有DC/DC电路、功率因数校正电路、PWM控制电路、均流电路和保护电路等。 1 有源功率因数校正环节 由于系统的功率因数要求0.9以上,采用二极管整流是不能满足要求的,所以,加入了有源功率因数校正环节。采用UC3854A/B控制芯片来组成功率因数电路。UC3854A/B是Unitrode公司一种新的高功率因数校正器集成控制电路芯片,是在UC3854基础上的改进。其特点是:采用平均电流控制,功率因数接近1,高带宽,限制电网电流失真≤3%[1]。图1是由UC3854A/B控制的有源功率因数校正电路。 该电路由两部分组成。UC3854A/B及外围元器件构成控制部分,实现对网侧输入电流和输出电压的控制。功率部分由L2,C5,V等元器件构成Boost升压电路。开关管V选择西门康公司的SKM75GB123D模块,其工作频率选在35kHz。升压电感L2为2mH/20A。C5采用四个450V/470μF的电解电容并联。因为,设计的PFC电路主要是用在大功率DC/DC电路中,所以,在负载轻的时候不进行功率因数校正,当负载较大时功率因数校正电路自动投入使用。此部分控制由图1中的比较器部分来实现。R10及R11是负载检测电阻。当负载较轻时,R10及R11上检测的信号输入给比较器,使其输出端为低电平,D2导通,给ENA(使能端)低电平使UC3854A/B封锁。在负载较大时ENA为高电平才让UC3854A/B工作。D3接到SS(软启动端),在负载轻时D3导通,使SS为低电平;当负载增大要求UC3854A/B工作时,SS端电位从零缓慢升高,控制输出脉冲占空比慢慢增大实现软启动。 2 DC/DC主电路及控制部分分析 2.1 DC/DC主电路拓扑 在大功率高频开关电源中,常用的主变换电路有推挽电路、半桥电路、全桥电路等[2]。其中推挽电路的开关器件少,输出功率大,但开关管承受电压高(为电源电压的2倍),且变压器有六个抽头,结构复杂;全桥电路开关管承受的电压不高,输出功率大,但是需要的开关器件多(4个),驱动电路复杂。半桥电路开关管承受的电压低,开关器件少,驱动简单。根据对各种拓扑方案的工程化实现难度,电气性能以及成本等指标的综合比较,本电源选用半桥式DC/DC变换器作为主电路。图2为大功率开关电源的主电路拓扑图。
上传时间: 2013-11-13
上传用户:ukuk
摘要:介绍一种采用单片机控制的小功率DC/AC逆变电源,直流升压控制部分采用电流型控制芯片UC3846,该控制方案能显著地抑制推挽变压器的磁偏,同时提高负载的动态响应速度。
上传时间: 2013-10-08
上传用户:sun_pro12580
受一篇网文启发,用ATmega88模拟数字功放,音源信号从AD5输入,PB1/PB2给出互补推挽的功率管驱动信号,也可直接接扬声器,已试验成功。
标签:
上传时间: 2016-07-01
上传用户:wl9454
基于TL494开关电源设计.doc基于TL494的DC-DC开关电源设计 摘 要 随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。近年来 ,随着功率电子器件(如IGBT、MOSFET)、PWM技术及开关电源理论的发展 ,新一代的电源开始逐步取代传统的电源电路。该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。 开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文采用双端驱动集成电路——TL494输的PWM脉冲控制器设计小汽车中的音响供电电源,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。
上传时间: 2022-02-23
上传用户:
放大器设计资料分享增加信号幅度或功率的装置,它是自动化技术工具中处理信号的重要元件。放大器的放大作用是用输入信号控制能源来实现的,放大所需功耗由能源提供。对于线性放大器,输出就是输入信号的复现和增强。对于非线性放大器,输出则与输入信号成一定函数关系。放大器按所处理信号物理量分为机械放大器、机电放大器放大器、电子放大器、液动放大器和气动放大器等,其中用得最广泛的是电子放大器。随着射流技术(见射流元件)的推广,液动或气动放大器的应用也逐渐增多。电子放大器又按所用有源器件分为真空管放大器、晶体管放大器、固体放大器和磁放大器,其中又以晶体管放大器应用最广。在自动化仪表中晶体管放大器常用于信号的电压放大和电流放大,主要形式有单端放大和推挽放大。此外,还常用于阻抗匹配、隔离、电流-电压转换、电荷-电压转换(如电荷放大器)以及利用放大器实现输出与输入之间的一定函数关系(如运算放大器)。
标签: 放大器
上传时间: 2022-03-10
上传用户:xsr1983
基于TMS320F28335的开关电源模块并联供电系统原理图+软件源码一、系统方案本系统主要由DC-DC主回路模块、信号采样模块、主控模块、电源模块组成,下面分别论证这几个模块的选择。1.1 DC-DC主回路的论证与选择方案一:采用推挽拓扑。 推挽拓扑因其变压器工作在双端磁化情况下而适合应用在低压大电流的场合。但是,推挽电路中的高频变压器如果在绕制中两臂不对称,就会使变压器因磁通不平衡而饱和,从何导致开关管烧毁;同时,由于电路中需要两个开关管,系统损耗将会很大。方案二:采用Boost升压拓扑。 Boost电路结构简单、元件少,因此损耗较少,电路转换效率高。但是,Boost电路只能实现升压而不能降压,而且输入/输出不隔离。方案三:采用单端反激拓扑。 单端反激电路结构简单,适合应用在大电压小功率的场合。由于不需要储能电感,输出电阻大等原因,电路并联使用时均流性较好。方案论证:上述方案中,方案一系统损耗大,方案二不能实现输入输出隔离,而方案三虽然对高频变压器设计要求较高,但系统要求两个DCDC模块并联,并且对效率有一定要求。因此,选择单端反激电路作为本系统的主回路拓扑。1.2 控制方法及实现方案方案一:采用专用的开关电源芯片及并联开关电源均流芯片。这种方案的优点是技艺成熟,且均流的精度高,实现成本较低。但这种方案的缺点是控制系统的性能取决于外围电路元件参数的选择,如果参数选择不当,则输出电压难以维持稳定。方案二:采用TI公司的DSP TMS320C28335作为主控,实现PWM输出,并控制A/D对输入输出的电压电流信号进行采样,从而进行可靠的闭环控制。与模拟控制方法相比,数字控制方法灵活性高、可靠性好、抗干扰能力强。但DSP成本不低,而且功耗较大,对系统的效率有一定影响。方案论证:上述方案中,考虑到题目要求的电流比例可调的指标,方案一较难实现,并且方案二开发简单,可以缩短开发周期。所以,选择方案二来实现本系统要求。
标签: tms320f28335 开关电源
上传时间: 2022-05-06
上传用户:
超声波电机(Utrasonic Motor简称USM)是一种新型的微特电机,有别于传统的电磁电机。在本文引言中,说明了USM与传统电磁电机相比的主要优点、基本组成及应用前景,同时说明了开展专用USM的驱动电路研究工作的背景及主要工作内容,作者要完成设计、样品加工及应用三部分工作等,此论文就是这三部分研究工作的总结。首先,根据对驱动电路的要求,结合国内外传统压电马达驱动电路的系统方案,设计出专用超声波电机的驱动电路的系统方案。在本方案中增加了位置检测与归零单元,去掉了频率跟踪单元,采用DSP作为控制单元,整合了电机驱动信号产生、电机选择与启动、位置检测信号处理和特殊信号译码等功能,有利于电路小型化和稳定性。方案具有新颖和独特性。其次,详细介绍了利用仿真与实际调试相结合的方法,完成了推挽逆变电路及升压脉冲变压器的工程设计和调试,着重解决了浪涌及功率开关管保护等问题,注意了变压器绕制工艺与漏感的关系。采用DSP芯片实现了多种控制和软、硬件结合,给出了用C语言编写的程序,重点解决了程序的调试与抗干扰问题。采用独特的数字编码方法,实现了位置检测的结构设计,完成了性能初步调试以及与DSP组成闭环系统,消除电机不断步进引起的空间位置上的积累误差,实现了电机步进误差归零的技术要求。设计了电路工程板图,完成了样机两台的加工和调试工作,与超声波电机进行了匹配调试实验,重点解决了阻抗匹配问题,达到了驱动电路的设计指标,实现了设计、加工、匹配调试三解工作的基本,aCn.coinal最后,根据前一段工作,提出了一些今后工作的意见,特别是工程应用化与集成化方面的研究想法。关键词:超声波电机,驱动电路,DSP,脉冲变压器,位置检测与归等
上传时间: 2022-06-18
上传用户:bluedrops
本文对家用太阳能光伏发电系统进行了研究和设计。首先在太阳能电池工作原理的基础上对其输出特性进行了仿真。根据其输出的非线性关系,阐述了最大功率点跟踪(MPPT)的原理,并结合DC-DC变换器对常用的MPPT算法进行了仿真。通过对比几种方法的优缺点,给出了一种新型MPPT算法。接着对储能蓄电池的充放电特性进行了研究,然后根据负载的要求计算了蓄电池的容量,并采用Boost变换器对其进行充电控制。其次,考虑到蓄电池组的电压等级较低,为使输出220V的交流电,通过分析几种拓扑结构,最终采用“推挽升压电路+全桥逆变”的电源设计方案以提高整个系统的效率,设计包括硬件和软件两部分。在推挽电路中介绍了各元器件参数的选择、高频变压器的设计及其控制电路等,其中PWM驱动电路输出采用图腾柱的方式以增强其驱动能力;逆变电路同样给出了功率开关管、滤波器的选取方法,并设计了过流保护和电压采样调理电路,对滤波器传递函数的仿真验证了设计的合理性。在软件设计中,基于DSP实现了MPPT控制、SPWM驱动信号的生成和P1闭环反馈控制。最后,论文给出了相关实验电路的调试结果,从中可以看出,所设计的电路实现了各部分的功能,并验证了设计的合理性。关键词:太阳能电池;最大功率点跟踪;推挽电路:SPWM:DSP
上传时间: 2022-06-19
上传用户:trh505
一、IGBT 驱动1 驱动电压的选择IGBT 模块GE 间驱动电压可由不同地驱动电路产生。典型的驱动电路如图1 所示。图1 IGBT 驱动电路示意图Q1,Q2 为驱动功率推挽放大,通过光耦隔离后的信号需通过Q1,Q2 推挽放大。选择Q1,Q2 其耐压需大于50V 。选择驱动电路时,需考虑几个因素。由于IGBT 输入电容较MOSFET 大,因此IGBT 关断时,最好加一个负偏电压,且负偏电压比MOSFET 大, IGBT 负偏电压最好在-5V~-10V 之内;开通时,驱动电压最佳值为15V 10% ,15V 的驱动电压足够使IGBT 处于充分饱和,这时通态压降也比较低,同时又能有效地限制短路电流值和因此产生的应力。若驱动电压低于12V ,则IGBT 通态损耗较大, IGBT 处于欠压驱动状态;若 VGE >20V ,则难以实现电流的过流、短路保护,影响 IGBT 可靠工作。2 栅极驱动功率的计算由于IGBT 是电压驱动型器件,需要的驱动功率值比较小,一般情况下可以不考虑驱动功率问题。但对于大功率IGBT ,或要求并联运行的IGBT 则需要考虑驱动功率。IGBT 栅极驱动功率受到驱动电压即开通VGE( ON )和关断 VGE( off ) 电压,栅极总电荷 QG 和开关 f 的影响。栅极驱动电源的平均功率 PAV 计算公式为:PAV =(VGE(ON ) +VGE( off ) )* QG *f对一般情况 VGE( ON ) =15V,VGE( off ) =10V,则 PAV 简化为: PAV =25* QG *f。f 为 IGBT 开关频率。栅极峰值电流 I GP 为:
上传时间: 2022-06-21
上传用户: