虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

扫频信号源

  • pspice使用教程

    第一单 PSPICE使用初步第二章 文本文件描述第三章 电路原理图程序第四章 模拟计算程序PSPICE及图形后第五章 信号源模型编辑STMED第六章 模型参数提取PArts第七章 常见问题处理第八章 PSPICE应用。

    标签: pspice 使用教程

    上传时间: 2013-10-29

    上传用户:libenshu01

  • Pspice教程(基础篇)

    Pspice教程课程内容:在这个教程中,我们没有提到关于网络表中的Pspice 的网络表文件输出,有关内容将会在后面提到!而且我想对大家提个建议:就是我们不要只看波形好不好,而是要学会分析,分析不是分析的波形,而是学会分析数据,找出自己设计中出现的问题!有时候大家可能会看到,其实电路并没有错,只是有时候我们的仿真设置出了问题,需要修改。有时候是电路的参数设计的不合理,也可能导致一些莫明的错误!我觉得大家做一个分析后自己看看OutFile文件!点,就可以看到详细的情况了!基本的分析内容:1.直流分析2.交流分析3.参数分析4.瞬态分析进阶分析内容:1. 最坏情况分析.2. 蒙特卡洛分析3. 温度分析4. 噪声分析5. 傅利叶分析6. 静态直注工作点分析数字电路设计部分浅谈附录A: 关于Simulation Setting的简介附录B: 关于测量函数的简介附录C:关于信号源的简介

    标签: Pspice 教程

    上传时间: 2013-10-14

    上传用户:31633073

  • 磁芯电感器的谐波失真分析

    磁芯电感器的谐波失真分析 摘  要:简述了改进铁氧体软磁材料比损耗系数和磁滞常数ηB,从而降低总谐波失真THD的历史过程,分析了诸多因数对谐波测量的影响,提出了磁心性能的调控方向。 关键词:比损耗系数, 磁滞常数ηB ,直流偏置特性DC-Bias,总谐波失真THD  Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033   Abstract:    Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward.  Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD  近年来,变压器生产厂家和软磁铁氧体生产厂家,在电感器和变压器产品的总谐波失真指标控制上,进行了深入的探讨和广泛的合作,逐步弄清了一些似是而非的问题。从工艺技术上采取了不少有效措施,促进了质量问题的迅速解决。本文将就此热门话题作一些粗浅探讨。  一、 历史回顾 总谐波失真(Total harmonic distortion) ,简称THD,并不是什么新的概念,早在几十年前的载波通信技术中就已有严格要求<1>。1978年邮电部公布的标准YD/Z17-78“载波用铁氧体罐形磁心”中,规定了高μQ材料制作的无中心柱配对罐形磁心详细的测试电路和方法。如图一电路所示,利用LC组成的150KHz低通滤波器在高电平输入的情况下测量磁心产生的非线性失真。这种相对比较的实用方法,专用于无中心柱配对罐形磁心的谐波衰耗测试。 这种磁心主要用于载波电报、电话设备的遥测振荡器和线路放大器系统,其非线性失真有很严格的要求。  图中  ZD   —— QF867 型阻容式载频振荡器,输出阻抗 150Ω, Ld47 —— 47KHz 低通滤波器,阻抗 150Ω,阻带衰耗大于61dB,       Lg88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB Ld88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB FD   —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次谐波衰耗b3(0)≥91 dB, DP  —— Qp373 选频电平表,输入高阻抗, L ——被测无心罐形磁心及线圈, C  ——聚苯乙烯薄膜电容器CMO-100V-707APF±0.5%,二只。 测量时,所配用线圈应用丝包铜电磁线SQJ9×0.12(JB661-75)在直径为16.1mm的线架上绕制 120 匝, (线架为一格) , 其空心电感值为 318μH(误差1%) 被测磁心配对安装好后,先调节振荡器频率为 36.6~40KHz,  使输出电平值为+17.4 dB, 即选频表在 22′端子测得的主波电平 (P2)为+17.4 dB,然后在33′端子处测得输出的三次谐波电平(P3), 则三次谐波衰耗值为:b3(+2)= P2+S+ P3 式中:S 为放大器增益dB 从以往的资料引证, 就可以发现谐波失真的测量是一项很精细的工作,其中测量系统的高、低通滤波器,信号源和放大器本身的三次谐波衰耗控制很严,阻抗必须匹配,薄膜电容器的非线性也有相应要求。滤波器的电感全由不带任何磁介质的大空心线圈绕成,以保证本身的“洁净” ,不至于造成对磁心分选的误判。 为了满足多路通信整机的小型化和稳定性要求, 必须生产低损耗高稳定磁心。上世纪 70 年代初,1409 所和四机部、邮电部各厂,从工艺上改变了推板空气窑烧结,出窑后经真空罐冷却的落后方式,改用真空炉,并控制烧结、冷却气氛。技术上采用共沉淀法攻关试制出了μQ乘积 60 万和 100 万的低损耗高稳定材料,在此基础上,还实现了高μ7000~10000材料的突破,从而大大缩短了与国外企业的技术差异。当时正处于通信技术由FDM(频率划分调制)向PCM(脉冲编码调制) 转换时期, 日本人明石雅夫发表了μQ乘积125 万为 0.8×10 ,100KHz)的超优铁氧体材料<3>,其磁滞系数降为优铁

    标签: 磁芯 电感器 谐波失真

    上传时间: 2013-12-15

    上传用户:天空说我在

  • RLC二阶电路暂态过程的Multisim仿真

    基于探索 RLC二阶电路仿真实验技术的目的,采用Multisim仿真软件对RLC二阶电路暂态过程进行了仿真实验测试,给出了电路在过阻尼、临界阻尼、欠阻尼等情况下零输入响应及零状态响应的Multisim仿真方案,并介绍了不同工作条件下仿真时Multisim中信号源的选取及设置条件。结论是仿真实验可直观形象地描述RLC二阶电路的工作过程,将电路的硬件实验方式向多元化方式转移,利于培养知识综合、知识应用、知识迁移的能力,使电路分析更加灵活和直观。

    标签: Multisim RLC 二阶电路 暂态过程

    上传时间: 2013-11-20

    上传用户:谁偷了我的麦兜

  • Arduino学习笔记4_Arduino软件模拟PWM

    注:1.这篇文章断断续续写了很久,画图技术也不精,难免错漏,大家凑合看.有问题可以留言.      2.论坛排版把我的代码缩进全弄没了,大家将代码粘贴到arduino编译器,然后按ctrl+T重新格式化代码格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脉宽调制波,通过调整输出信号占空比,从而达到改 变输出平均电压的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 个8 位精度PWM 引脚,分别是3, 5, 6, 9, 10, 11 脚。我们可以使用analogWrite()控 制PWM 脚输出频率大概在500Hz 的左右的PWM 调制波。分辨率8 位即2 的8 次方等于 256 级精度。但是有时候我们会觉得6 个PWM 引脚不够用。比如我们做一个10 路灯调光, 就需要有10 个PWM 脚。Arduino Duemilanove 2009 有13 个数字输出脚,如果它们都可以 PWM 的话,就能满足条件了。于是本文介绍用软件模拟PWM。 二、Arduino 软件模拟PWM Arduino PWM 调压原理:PWM 有好几种方法。而Arduino 因为电源和实现难度限制,一般 使用周期恒定,占空比变化的单极性PWM。 通过调整一个周期里面输出脚高/低电平的时间比(即是占空比)去获得给一个用电器不同 的平均功率。 如图所示,假设PWM 波形周期1ms(即1kHz),分辨率1000 级。那么需要一个信号时间 精度1ms/1000=1us 的信号源,即1MHz。所以说,PWM 的实现难点在于需要使用很高频的 信号源,才能获得快速与高精度。下面先由一个简单的PWM 程序开始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 这是一个软件PWM 控制Arduino D13 引脚的例子。只需要一块Arduino 即可测试此代码。 程序解析:由for 循环可以看出,完成一个PWM 周期,共循环255 次。 假设bright=100 时候,在第0~100 次循环中,i 等于1 到99 均小于bright,于是输出PWMPin 高电平; 然后第100 到255 次循环里面,i 等于100~255 大于bright,于是输出PWMPin 低电平。无 论输出高低电平都保持30us。 那么说,如果bright=100 的话,就有100 次循环是高电平,155 次循环是低电平。 如果忽略指令执行时间的话,这次的PWM 波形占空比为100/255,如果调整bright 的值, 就能改变接在D13 的LED 的亮度。 这里设置了每次for 循环之后,将bright 加一,并且当bright 加到255 时归0。所以,我们 看到的最终效果就是LED 慢慢变亮,到顶之后然后突然暗回去重新变亮。 这是最基本的PWM 方法,也应该是大家想的比较多的想法。 然后介绍一个简单一点的。思维风格完全不同。不过对于驱动一个LED 来说,效果与上面 的程序一样。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,这段代码少了一个For 循环。它先输出一个高电平,然后维持(bright*30)us。然 后输出一个低电平,维持时间((255-bright)*30)us。这样两次高低就能完成一个PWM 周期。 分辨率也是255。 三、多引脚PWM Arduino 本身已有PWM 引脚并且运行起来不占CPU 时间,所以软件模拟一个引脚的PWM 完全没有实用意义。我们软件模拟的价值在于:他能将任意的数字IO 口变成PWM 引脚。 当一片Arduino 要同时控制多个PWM,并且没有其他重任务的时候,就要用软件PWM 了。 多引脚PWM 有一种下面的方式: int brights[14] = {0}; //定义14个引脚的初始亮度,可以随意设置 int StartPWMPin = 0, EndPWMPin = 13; //设置D0~D13为PWM 引脚 int PWMResolution = 255; //设置PWM 占空比分辨率 void setup() { //定义所有IO 端输出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //随便定义个初始亮度,便于观察 brights[ i ] = random(0, 255); } } void loop() { //这for 循环是为14盏灯做渐亮的。每次Arduino loop()循环, //brights 自增一次。直到brights=255时候,将brights 置零重新计数。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是计数一个PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每个PWM 周期均遍历所有引脚 { if(i < brights[j])\   所以我们要更改PWM 周期的话,我们将精度(代码里面的变量:PWMResolution)降低就行,比如一般调整LED 亮度的话,我们用64 级精度就行。这样速度就是2x32x64=4ms。就不会闪了。

    标签: Arduino PWM 软件模拟

    上传时间: 2013-10-23

    上传用户:mqien

  • 最高效的FFT代码

    最高效的FFT代码,信号源为固定文件, 芯片为5402,点数可变

    标签: FFT 代码

    上传时间: 2014-01-15

    上传用户:cxl274287265

  • 据我们使用24CXXEEPROM的经验,当用"指定地址_读"时,若该地址不在一页开头,会常出错。尝试多种措施,均未彻底消除 按页读写则彻底解决了。本程序就是按页读写编写的

    据我们使用24CXXEEPROM的经验,当用"指定地址_读"时,若该地址不在一页开头,会常出错。尝试多种措施,均未彻底消除 按页读写则彻底解决了。本程序就是按页读写编写的,但它也支持单个﹑多个﹑甚至整个芯片内数据的读写。本程序已在山东风光电子公司的变频器和功率信号源上通过并使用使用,读写绝对可靠。

    标签: CXXEEPROM 地址 读写

    上传时间: 2015-06-05

    上传用户:星仔

  • 一维线形阵元的music算法DOA估计

    一维线形阵元的music算法DOA估计,参数为3个信号源,8阵元接收

    标签: music DOA 算法

    上传时间: 2015-06-16

    上传用户:star_in_rain

  • 以SPCE061A单片机( Single Chip Micyoco)为核心

    以SPCE061A单片机( Single Chip Micyoco)为核心,通过DDS合成技术设计制作了一个步进值能任意调节的多功能信号源。该信号源在1KHz~10MHz范围能输出稳定可调的正弦波,并具有AM、FM、ASK和PSK等调制功能。信号输出部分采用低损耗电流反馈型宽带运放作电压放大,很好地解决了带宽和带负载能力的要求。系统带中文显示和键盘控制功能,操作简便,实现效果良好。 内含 原程序,正弦信号发生器的pCB原理图,以及一些相关论文。

    标签: Micyoco Single SPCE 061A

    上传时间: 2015-07-07

    上传用户:lizhizheng88

  • 接ADDA 板卡

    接ADDA 板卡,外接信号源(峰峰值最大为1V),运行PC 端程序可 以将输入的信号源波形在PC 上显示出来,完成USB 的数据采集功能。

    标签: ADDA 板卡

    上传时间: 2015-07-12

    上传用户:ommshaggar