在采用电容器对电网进行无功功率补偿的同时,谐波对电网造成的不利影响已是不可回避的问题,也就是说不考虑谐波的影响因素,而单纯进行无功补偿的时代已经过去,对负载系统进行无功补偿的同时,必须兼顾对谐波治理。
上传时间: 2013-11-14
上传用户:784533221
M8电源:如果想扩流使用,需要多个功率管并联,必须加均流电阻。并且同时要增加主滤波和泄放电阻。功率管多需要增加一级推动管。 液晶的连接图。【注意1脚位置】 液晶的背光接法:从液晶背后标记A和K的位置引出背光电源,接到M8V4电源板上标记LED的位置。注意有正负,反了背光不亮。 首次通电,需要调整液晶对比度才能显示,调整M8V4电源板上的5K可调。让显示清晰即可。
标签: 电源
上传时间: 2013-11-02
上传用户:qwer0574
要延长低功率应用中的电池工作时间,采用一种经过优化设计的电源非常重要。首先,必须选择正确的电源架构:其次,必须了解这些架构中有哪些特性可以优化。
上传时间: 2013-11-24
上传用户:bcjtao
简易负离子发生器负离子增加,对人有催眠、止汗、镇痛、增进食欲,使人精神爽快,消除疲劳的作用。图1是负离子发生器电路图。220V交流市电经D1整流后向C3和C2充电,当C2充电至氖泡导通并触发SCR导通时,C3经SCR、B的L1放电,经B感应升压后,由D2反向整流得8kV直流高压使发生器M的分子电离而产生负离子。调整R3的阻值可以改变触发频率和输出电压。调整时必须注意安全,更换元件需拨下电源插头
标签: 负离子发生器
上传时间: 2013-10-29
上传用户:731140412
采用双极型开关管的逆变器,基极驱动电流基本上为开关电流的1/β,因此大电流开关电路必须采用多级放大,不仅使电路复杂化,可靠性也变差而且随着输出功率的增大,开关管驱动电流需大于集电极电流的1/β,致使普通驱动IC无法直接驱动。虽说采用多级放大可以达到目的,但是波形失真却明显增大,从而导致开关管的导通/截止损耗也增大。目前解决大功率逆变电源及UPS的驱动方案,大多采用MOS FET管作开关器件。
上传时间: 2013-10-20
上传用户:zhaoq123
·本PDF产品目录是从株式会社村田制作所网站中下载的。规格若有变更,或若其中产品停产,恕不另行通知。请在订购之前向我公司销售代表或产品工程师查询。 ·本PDF产品目录所记载的产品规格,因受篇幅的限制,只提供了主要产品资料。在您订购前,必须确认规格表内容,或者互换协商定案图。
上传时间: 2013-10-16
上传用户:chenbhdt
1.前言 模块使用之前应注意如下的警告和注意事项。不正确的应用可能导致电击,模块损坏或着火的危险。请仔细阅读如下警告和注意事项:1.1警告:I. 不要触摸散热器和外壳,他们可能温度很高。II. 不要触摸输入端子或打开外壳触摸内部器件,他们可能存在高温或高压造成烫伤或电击。III. 当模块工作时,把你的手和脸远离模块,否则在模块异常时可能造成伤害。1.2注意事项:I. 请确认已按照使用说明书的要求正确连接输入输出管脚和信号管脚。II. 确保在模块的输入端连接一个快速熔断保险丝,以安全工作并满足安规要求。III. 模块电源属于元器件,安装和使用必须经专业设计人员进行设计。IV. 此系列模块电源属于一次变换,在应用中应注意符合安全规范。V. 模块的输入、输出端属于危险能量,必须保证终端用户不能接触到。设备制造商必须保证模块输出不易被服务工程师短路或工程师遗落的金属部件短路。VI. 应用电路和参数仅供参考,在完成应用电路设计之前必须对参数和电路进行验证。VII. 这篇文档的更改不能保证及时通知客户,在实际使用中,请注意最新的应用说明。
上传时间: 2013-11-17
上传用户:luke5347
在实际工作中,遇到一些厂矿企业的业扩报装,电站规模不大,但申报的10kV配变容量往往大于800kVA,一般为1000~2000kVA。如果选择干式变压器,由于目前国内厂家生产的熔丝最大额定电流为125A,即所供的最大负荷不超过2000kW,所以2000kVA以下的干式变压器和800kVA以下的油浸式变压器保护用负荷开关-熔断器组合即可。可是对于800kVA及以上的油浸式变压器和2000kVA以上的干式变压器,由于涉及到重瓦斯、超高温自动跳闸的要求,配变必须配置高压开关柜,现在的开关柜兼保护、控制、操作、信号于一身,功能齐全,选型已经不是问题,重要的问题是保护控制的电源供电方式如何选取。
上传时间: 2013-10-18
上传用户:koulian
同步整流技术简单介绍大家都知道,对于开关电源,在次级必然要有一个整流输出的过程。作为整流电路的主要元件,通常用的是整流二极管(利用它的单向导电特性),它可以理解为一种被动式器件:只要有足够的正向电压它就开通,而不需要另外的控制电路。但其导通压降较高,快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降。这个压降完全是做的无用功,并且整流二极管是一种固定压降的器件,举个例子:如有一个管子压降为0.7V,其整流为12V时它的前端要等效12.7V电压,损耗占0.7/12.7≈5.5%.而当其为3.3V整流时,损耗为0.7/4(3.3+0.7)≈17.5%。可见此类器件在低压大电流的工作环境下其损耗是何等地惊人。这就导致电源效率降低,损耗产生的热能导致整流管进而开关电源的温度上升、机箱温度上升--------有时系统运行不稳定、电脑硬件使用寿命急剧缩短都是拜这个高温所赐。随着电脑硬件技术的飞速发展,如GeForce 8800GTX显卡,其12V峰值电流为16.2A。所以必须制造能提供更大输出电流(如多核F1,四路12V,每路16A;3.3V和5V输出电流各高达24A)的电源转换器。而当前世界的能源紧张问题的凸现,为广大用户提供更高转换效率(如多核R80,完全符合80PLUS标准)的电源转换器就是我们整个开关电源行业的不可回避的社会责任了。如何解决这些问题?寻找更好的整流方式、整流器件。同步整流技术和通态电阻(几毫欧到十几毫欧)极低的专用功率MOSFET就是在这个时刻走上开关电源技术发展的历史舞台了!作为取代整流二极管以降低整流损耗的一种新器件,功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。因为用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。它可以理解为一种主动式器件,必须要在其控制极(栅极)有一定电压才能允许电流通过,这种复杂的控制要求得到的回报就是极小的电流损耗。在实际应用中,一般在通过20-30A电流时才有0.2-0.3V的压降损耗。因为其压降等于电流与通态电阻的乘积,故小电流时,其压降和恒定压降的肖特基不同,电流越小压降越低。这个特性对于改善轻载效率(20%)尤为有效。这在80PLUS产品上已成为一种基本的解决方案了。对于以上提到的两种整流方案,我们可以通过灌溉农田来理解:肖特基整流管可以看成一条建在泥土上没有铺水泥的灌溉用的水道,从源头下来的水源在中途渗漏了很多,十方水可能只有七、八方到了农田里面。而同步整流技术就如同一条镶嵌了光滑瓷砖的引水通道,除了一点点被太阳晒掉的损失外,十方水能有9.5方以上的水真正用于浇灌那些我们日日赖以生存的粮食。我们的多核F1,多核R80,其3.3V整流电路采用了通态电阻仅为0.004欧的功率MOSFET,在通过24A峰值电流时压降仅为20*0.004=0.08V。如一般PC正常工作时的3.3V电流为10A,则其压降损耗仅为10*0.004=0.04V,损耗比例为0.04/4=1%,比之于传统肖特基加磁放大整流技术17.5%的损耗,其技术的进步已不仅仅是一个量的变化,而可以说是有了一个质的飞跃了。也可以说,我们为用户修建了一条严丝合缝的灌溉电脑配件的供电渠道。
标签: 同步整流
上传时间: 2013-10-27
上传用户:杏帘在望
高压配电网的保护措施有:一、电网相间短路的电流保护。正常运行时输电线路上流过负荷电流,母线电压约为额定电压。当输电线路发生短路时,故障相电流增大。根据这一特征,可以构成反应故障时电流增大而动作的电流保护。对于输电线路相间短路通常采用三段式电流保护即无时限电流速断保护(电流I段),限时电流速断保护(电流II段),和定时限过电流保护(电流III段)。其中电流I段、II段共同构成线跌的主保护。III段为后备保护。1、无时限电流速断保护。在保证选择性和可靠性的前提下,根据对继电保护快速性的要求,原则上应装设快速动作的保护装置,使切除故障的时间尽可能短。反应电流增加,且不带时限动作的电流保护称为无时限电流速断保护。在单侧电源辐射形电网为切除线路故障,需在每条线跌电源侧装设断路器和相应的保护。假设线路L1、L2分别装有电流速断保护1和保护2,当线路L1上发生短路时,希望保护1能瞬时动作。但从选择要求出发,在下一条线路即L2首端K2点短路时,保护1能瞬时动作。但从选择性要求出发,在下一条线路L2首端K2点短路时,保护1不应动作,而应由保护2动作切除故障,为使保护1在K2点短路时不起动,必须使它的动作电流大于K2点短路时的最大短路电流,又称作按躲过一下条线路出口处短路的条件整定。
上传时间: 2013-11-16
上传用户:zhengjian