虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

平均时间

  • 连续时间周期信号的傅里叶级数

    实验三 连续时间周期信号的傅里叶级数

    标签: 连续时间 周期信号 傅里叶

    上传时间: 2013-10-16

    上传用户:shanml

  • SVC在无线信道传输中的非均衡差错保护

    针对H.264的可伸缩视频编码扩展标准(SVC)在噪声信道中的传输,采用低密度奇偶校验码(LDPC)提出一种非均衡差错保护的方案。在所提的方案中,根据时间、分辨率和质量把原视频序列按重要性分成不同的层。由于不同层的数据对错误的敏感性不同,对其进行不同码率的LDPC信道编码,实现非均衡差错保护。根据视频流中每一帧不同层的PSNR增量不同,和不同信道码率下正确解码的概率不同,反复计算每一帧所有码率组合的PSNR增量值并找出最大组,从而进行信道编码并传输。实验表明,在相同的平均码率条件下,提出的方案相比其他方案的PSNR值增加了2.8 dB,更适合无线信道的传输。

    标签: SVC 无线信道 传输 均衡

    上传时间: 2013-10-13

    上传用户:xitai

  • 数字同步网和时间同步网

      数字同步的基本概念   同步是指通信双方的定时信号符合一定的时间关系,它又可以分为位同步、帧同步和网同步:   位同步是指通信双方的位定时脉冲信号频率相等且符合一定的相位关系。   帧同步是指通信双方的帧定时信号的频率相同且保持一定的相位关系。帧同步的作用是在同步复用的情况下,能够正确地区分每一帧的起始位置从而确定各路信号的相应位置并正确地把它们区分开来。帧同步是通过在信码中插入帧同步码来实现的。   网同步是指网络中各个节点的时钟信号的频率相等 。

    标签: 数字同步网 时间同步

    上传时间: 2013-10-29

    上传用户:宋桃子

  • HHS12系列时间继电器使用说明书

    概述:HHS12系列时间继电器(以下简称继电器),适用于交流,工作电压及以下或直流工作电压24V的控制电路中作延时元件,按预定时间接通或分断电路。该继电器技术性能、外形尺寸、安装型式等均与美国公司时间继电器相同。

    标签: HHS 12 时间继电器 使用说明书

    上传时间: 2014-01-05

    上传用户:脚趾头

  • 声音导引智能系统

    设计采用MSP430单片机作为核心器件的声音导引智能系统,可以实现对电机控制、ASSP芯片以及显示模块、语音收发、无线收发模块的控制,应用多通道两相四线式步进电机/直流电机控制芯片ASSP芯片,实现对可移动声源的运动控制,系统通过语音收发模块实现可移动声源的定位,并通过无线收发模块进行对可移动声源的运动控制。同时应用ZX240128M1液晶显示,可以显示过程的测量响应时间、可移动声源的起始位置到OX线的垂直距离及平均速度。整个系统具有人性化,智能化等优点。

    标签: 声音导引智能系统

    上传时间: 2013-12-14

    上传用户:yd19890720

  • 声音导引智能系统

    设计采用MSP430单片机作为核心器件的声音导引智能系统,可以实现对电机控制、ASSP芯片以及显示模块、语音收发、无线收发模块的控制,应用多通道两相四线式步进电机/直流电机控制芯片ASSP芯片,实现对可移动声源的运动控制,系统通过语音收发模块实现可移动声源的定位,并通过无线收发模块进行对可移动声源的运动控制。同时应用ZX240128M1液晶显示,可以显示过程的测量响应时间、可移动声源的起始位置到OX线的垂直距离及平均速度。整个系统具有人性化,智能化等优点。

    标签: 声音导引智能系统

    上传时间: 2013-11-03

    上传用户:windwolf2000

  • 基于nanoPAN5375的地下停车场语音导航系统

    前的GPS导航应用很成熟,精度也比较高,但在地下停车场等室内地方,GPS信号非常微弱,无法对车进行导航,同时当前的地下停车场没有很好地智能化。为避免车主盲目寻找车位,方便车主在尽可能短的时间内寻找到车位,设计并制作基于nanoPAN5375的语音导航系统。系统由4个nanoPAN5375模块、2个CC1101模块、超声波模块与isd1700模块构成。以STM32F103微控制器为核心芯片,使用nanoPAN5375模块进行无线定位,CC1101模块传输超声波模块采集到的车位信息,语音模块isd1700进行语音导航,软件采用三边质心算法和卡尔曼滤波算法。实验表明,在边长为6米的等边三角形内,x坐标的平均误差为0.42米,y坐标的平均误差为0.42米;系统在边长为12米的等边三角形内实现过较为精确的语音导航。

    标签: nanoPAN 5375 停车场 语音导航

    上传时间: 2013-11-24

    上传用户:zhang97080564

  • Android系统下OpenCV的人脸检测模块的设计

    针对解决OpenCV人脸检测模块在Android平台编译和移植的问题,提出一种利用JNI技术(Java Native Interface)调用OpenCV以及采用Android NDK(Native Development Kit)生成共享库的目标检测方法。文中从分析利用Android NDK编译Android平台所需要的OpenCV静态库的问题入手,详细阐述了利用JNI调用OpenCV相关函数的具体步骤。经过多次试验,证明该人脸检测模块的平均检测时间为1 280 ms,具有较高的检测速度和检测精度。

    标签: Android OpenCV 人脸检测

    上传时间: 2013-12-10

    上传用户:15736969615

  • 多头动臂式贴片机贴装时间分阶段启发式优化算法

    摘要:贴片机贴装时间是影响表面组装生产线效率的重要因素,文中提出了一种改进式分阶段启发式算法解决具有分飞行换嘴结构的多贴装头动臂式贴片机贴装时间优化问题;首先,根据飞行换嘴的特点,提出了适用于飞行换嘴的喂料器组分配方案;其次,依据这一分配结果,通过改进式启发式算法实现了喂料器组在喂料器机构上的分配;最后,结合近邻搜索法解决了元器件的贴装顺序优化问题;仿真结果证明,文中采用的改进分阶段启发式算法比传统分阶段启发式算法具有更好的贴装时间优化效果。关键词:分阶段启发式算法;贴片机;飞行换嘴

    标签: 贴片机 优化算法 启发式

    上传时间: 2013-10-22

    上传用户:大灰狼123456

  • Arduino学习笔记4_Arduino软件模拟PWM

    注:1.这篇文章断断续续写了很久,画图技术也不精,难免错漏,大家凑合看.有问题可以留言.      2.论坛排版把我的代码缩进全弄没了,大家将代码粘贴到arduino编译器,然后按ctrl+T重新格式化代码格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脉宽调制波,通过调整输出信号占空比,从而达到改 变输出平均电压的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 个8 位精度PWM 引脚,分别是3, 5, 6, 9, 10, 11 脚。我们可以使用analogWrite()控 制PWM 脚输出频率大概在500Hz 的左右的PWM 调制波。分辨率8 位即2 的8 次方等于 256 级精度。但是有时候我们会觉得6 个PWM 引脚不够用。比如我们做一个10 路灯调光, 就需要有10 个PWM 脚。Arduino Duemilanove 2009 有13 个数字输出脚,如果它们都可以 PWM 的话,就能满足条件了。于是本文介绍用软件模拟PWM。 二、Arduino 软件模拟PWM Arduino PWM 调压原理:PWM 有好几种方法。而Arduino 因为电源和实现难度限制,一般 使用周期恒定,占空比变化的单极性PWM。 通过调整一个周期里面输出脚高/低电平的时间比(即是占空比)去获得给一个用电器不同 的平均功率。 如图所示,假设PWM 波形周期1ms(即1kHz),分辨率1000 级。那么需要一个信号时间 精度1ms/1000=1us 的信号源,即1MHz。所以说,PWM 的实现难点在于需要使用很高频的 信号源,才能获得快速与高精度。下面先由一个简单的PWM 程序开始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 这是一个软件PWM 控制Arduino D13 引脚的例子。只需要一块Arduino 即可测试此代码。 程序解析:由for 循环可以看出,完成一个PWM 周期,共循环255 次。 假设bright=100 时候,在第0~100 次循环中,i 等于1 到99 均小于bright,于是输出PWMPin 高电平; 然后第100 到255 次循环里面,i 等于100~255 大于bright,于是输出PWMPin 低电平。无 论输出高低电平都保持30us。 那么说,如果bright=100 的话,就有100 次循环是高电平,155 次循环是低电平。 如果忽略指令执行时间的话,这次的PWM 波形占空比为100/255,如果调整bright 的值, 就能改变接在D13 的LED 的亮度。 这里设置了每次for 循环之后,将bright 加一,并且当bright 加到255 时归0。所以,我们 看到的最终效果就是LED 慢慢变亮,到顶之后然后突然暗回去重新变亮。 这是最基本的PWM 方法,也应该是大家想的比较多的想法。 然后介绍一个简单一点的。思维风格完全不同。不过对于驱动一个LED 来说,效果与上面 的程序一样。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,这段代码少了一个For 循环。它先输出一个高电平,然后维持(bright*30)us。然 后输出一个低电平,维持时间((255-bright)*30)us。这样两次高低就能完成一个PWM 周期。 分辨率也是255。 三、多引脚PWM Arduino 本身已有PWM 引脚并且运行起来不占CPU 时间,所以软件模拟一个引脚的PWM 完全没有实用意义。我们软件模拟的价值在于:他能将任意的数字IO 口变成PWM 引脚。 当一片Arduino 要同时控制多个PWM,并且没有其他重任务的时候,就要用软件PWM 了。 多引脚PWM 有一种下面的方式: int brights[14] = {0}; //定义14个引脚的初始亮度,可以随意设置 int StartPWMPin = 0, EndPWMPin = 13; //设置D0~D13为PWM 引脚 int PWMResolution = 255; //设置PWM 占空比分辨率 void setup() { //定义所有IO 端输出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //随便定义个初始亮度,便于观察 brights[ i ] = random(0, 255); } } void loop() { //这for 循环是为14盏灯做渐亮的。每次Arduino loop()循环, //brights 自增一次。直到brights=255时候,将brights 置零重新计数。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是计数一个PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每个PWM 周期均遍历所有引脚 { if(i < brights[j])\   所以我们要更改PWM 周期的话,我们将精度(代码里面的变量:PWMResolution)降低就行,比如一般调整LED 亮度的话,我们用64 级精度就行。这样速度就是2x32x64=4ms。就不会闪了。

    标签: Arduino PWM 软件模拟

    上传时间: 2013-10-08

    上传用户:dingdingcandy