虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

带来

  • 虚拟维修技术综述

    近年来,虚拟现实技术蓬勃发展,由此带来了装备维修领域的重大革新,即虚拟维修技术。在维修训练和维修性设计分析领域,虚拟维修技术的研究取得了一系列重大进展,并在实际中得到了广泛的应用,取得了巨大的经济和社会效益。为了更好地运用虚拟维修技术,文中介绍了虚拟维修的定义、功能、组成要素、实现方式、关键技术以及系统设计原理和过程,并论述了国内外虚拟维修的发展情况,展望了其在未来的发展趋势。

    标签: 虚拟维修 技术综述

    上传时间: 2013-10-11

    上传用户:ly1994

  • HHT方法在探地雷达回波信号特征提取上的应用

    探地雷达回波信号是一种非平稳非线性信号,其中不仅包含地下埋藏物的目标信号,还包含有可能掩藏目标信号的直达波信号,给目标的识别带来困难。文中采用HHT方法对探地雷达回波信号进行特征分析,提取回波信号的IMF分量的瞬时频率作为特征向量。实验结果表明,用HHT方法提取特征可较好的避免直达波影响,该方法是可行而有效的,为进一步鉴别地下埋藏物提供了新的思想和方法。

    标签: HHT 探地雷达 回波信号 特征提取

    上传时间: 2013-10-22

    上传用户:hjkhjk

  • ADI iCoupler数字隔离器应用

    医疗设备行业的持续创新为通过互联网收集和分发病人信息带来了众多新的可能,使医护人员能实时远程访问关键数据,确保实现最高水平的病人护理和运行效率。作为安全通信解决方案领域举世公认的领先企业,Lantronix®目前推出了新型EDS-MD™多端口医疗设备服务器,为这种转型创造了更多便利。该服务器专为医疗行业设计,可实现病人监护系统、血糖分析仪、心电图仪、输液泵等医疗设备的安全访问和管理。  

    标签: iCoupler ADI 数字隔离器

    上传时间: 2013-10-20

    上传用户:haohaoxuexi

  • 数字隔离器为工业电机驱动应用带来性能优势

    工业电机驱动中使用的电子控制必须能在恶劣的电气环境中提供较高的系统性能。电源电路会在电机绕组上导致电压沿激增现象,而这些电压沿则可以电容耦合进低电压电路之中。电源电路中,电源开关和寄生元件的非理想行为也会产生感性耦合噪声。控制电路与电机和传感器之间的长电缆形成多种路径,可将噪声耦合到控制反馈信号中。高性能驱动器需要必须与高噪声电源电路隔离开的高保真反馈控制和信号。在典型的驱动系统中,包括隔离栅极驱动信号,以便将逆变器、电流和位置反馈信号驱动到电机控制器,以及隔离各子系统之间的通信信号。实现信号隔离时,不得牺牲信号路径的带宽,也不得显著增加系统成本。光耦合器是跨越隔离栅实现安全隔离的传统方法。尽管光耦合器已使用数十年,其不足也会影响系统级性能。

    标签: 数字隔离器 工业电机 带来 性能

    上传时间: 2013-11-03

    上传用户:jhs541019

  • 具体应用的电容感应系统设计

    在许多消费电子产品及白色家电应用中,新兴的电容感应按钮正作为一个流行的用户界面替代机械开关。然而,电容感应界面设计也会带来挑战,在新产品研发、生产及质量控制等方面都可能会出现问题。例如,不同线路板的电容感应按钮寄生电容(CP )可能不同,环境变化(例如温度及湿度)也可能会改变CP。系统不同噪声也不相同。

    标签: 电容感应 系统设计

    上传时间: 2013-10-23

    上传用户:zhangfx728

  • ESD保护电路的设计

    ESD 静电放电给你的电子产品带来致命的危害不仅降低了产品的可靠性增加了维修成本而且不符合欧洲共同体规定的工业标准EN61000-4-2 就会影响产品在欧洲的销售所以电子设备制造商通常会在电路设计的初期就考虑ESD 保护电路本文将讨论ESD保护电路的几种方法.

    标签: ESD 保护电路

    上传时间: 2013-11-24

    上传用户:zxc23456789

  • 数字预失真(DPD)算法研发工具和验证方案

    在无线通信系统全面进入3G并开始迈向 4G的过程中,使用数字预失真技术(Digital Pre-distortion,以下简称DPD)对发射机的功放进行线性化是一门关键技术。功率放大器是通信系统中影响系统性能和覆盖范围的关键部件,非线性是功放的固有特性。非线性会引起频谱增长(spectral re-growth),从而造成邻道干扰,使带外杂散达不到协议标准规定的要求。非线性也会造成带内失真,带来系统误码率增大的问题。

    标签: DPD 数字预失真 算法 验证方案

    上传时间: 2013-10-19

    上传用户:yy_cn

  • 视频差分放大器带来低电压应用的多功能性

      The LT®6552 is a specialized dual-differencing 75MHzoperational amplifier ideal for rejecting common modenoise as a video line receiver. The input pairs are designedto operate with equal but opposite large-signal differencesand provide exceptional high frequency commonmode rejection (CMRR of 65dB at 10MHz), therebyforming an extremely versatile gain block structure thatminimizes component count in most situations. The dualinput pairs are free to take on independent common modelevels, while the two voltage differentials are summedinternally to form a net input signal.

    标签: 视频 差分放大器 低电压 多功能

    上传时间: 2014-12-23

    上传用户:13691535575

  • MILMEGA新款EMC测试放大器

    2010年4月13日, 专业设计和制造固态高功率宽带放大器的MILMEGA公司于2010年亚太区电磁兼容(APEMC)国际学术大会及展览会期间宣布推出一款新的放大器产品。该款产品主要针对商用EMC测试IEC 61000-4-3 标准(覆盖频率范围为80 MHz~1 GHz)。MILMEGA的这一新产品将给EMC测试领域带来革命性的突破。

    标签: MILMEGA EMC 测试 放大器

    上传时间: 2013-11-17

    上传用户:米米阳123

  • 时钟分相技术应用

    摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。 关键词: 时钟分相技术; 应用 中图分类号: TN 79  文献标识码:A   文章编号: 025820934 (2000) 0620437203 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的 性能。尤其现代电子系统对性能的越来越高的要求, 迫使我们集中更多的注意力在更高频率、 更高精度的时钟设计上面。但随着系统时钟频率的升高。我们的系统设计将面临一系列的问 题。 1) 时钟的快速电平切换将给电路带来的串扰(Crosstalk) 和其他的噪声。 2) 高速的时钟对电路板的设计提出了更高的要求: 我们应引入传输线(T ransm ission L ine) 模型, 并在信号的匹配上有更多的考虑。 3) 在系统时钟高于100MHz 的情况下, 应使用高速芯片来达到所需的速度, 如ECL 芯 片, 但这种芯片一般功耗很大, 再加上匹配电阻增加的功耗, 使整个系统所需要的电流增大, 发 热量增多, 对系统的稳定性和集成度有不利的影响。 4) 高频时钟相应的电磁辐射(EM I) 比较严重。 所以在高速数字系统设计中对高频时钟信号的处理应格外慎重, 尽量减少电路中高频信 号的成分, 这里介绍一种很好的解决方法, 即利用时钟分相技术, 以低频的时钟实现高频的处 理。 1 时钟分相技术 我们知道, 时钟信号的一个周期按相位来分, 可以分为360°。所谓时钟分相技术, 就是把 时钟周期的多个相位都加以利用, 以达到更高的时间分辨。在通常的设计中, 我们只用到时钟 的上升沿(0 相位) , 如果把时钟的下降沿(180°相位) 也加以利用, 系统的时间分辨能力就可以 提高一倍(如图1a 所示)。同理, 将时钟分为4 个相位(0°、90°、180°和270°) , 系统的时间分辨就 可以提高为原来的4 倍(如图1b 所示)。 以前也有人尝试过用专门的延迟线或逻辑门延时来达到时钟分相的目的。用这种方法产生的相位差不够准确, 而且引起的时间偏移(Skew ) 和抖动 (J itters) 比较大, 无法实现高精度的时间分辨。 近年来半导体技术的发展, 使高质量的分相功能在一 片芯片内实现成为可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能优异的时钟 芯片。这些芯片的出现, 大大促进了时钟分相技术在实际电 路中的应用。我们在这方面作了一些尝试性的工作: 要获得 良好的时间性能, 必须确保分相时钟的Skew 和J itters 都 比较小。因此在我们的设计中, 通常用一个低频、高精度的 晶体作为时钟源, 将这个低频时钟通过一个锁相环(PLL ) , 获得一个较高频率的、比较纯净的时钟, 对这个时钟进行分相, 就可获得高稳定、低抖动的分 相时钟。 这部分电路在实际运用中获得了很好的效果。下面以应用的实例加以说明。2 应用实例 2. 1 应用在接入网中 在通讯系统中, 由于要减少传输 上的硬件开销, 一般以串行模式传输 图3 时钟分为4 个相位 数据, 与其同步的时钟信号并不传输。 但本地接收到数据时, 为了准确地获取 数据, 必须得到数据时钟, 即要获取与数 据同步的时钟信号。在接入网中, 数据传 输的结构如图2 所示。 数据以68MBös 的速率传输, 即每 个bit 占有14. 7ns 的宽度, 在每个数据 帧的开头有一个用于同步检测的头部信息。我们要找到与它同步性好的时钟信号, 一般时间 分辨应该达到1ö4 的时钟周期。即14. 7ö 4≈ 3. 7ns, 这就是说, 系统时钟频率应在300MHz 以 上, 在这种频率下, 我们必须使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型门延迟为340p s) , 如前所述, 这样对整个系统设计带来很多的困扰。 我们在这里使用锁相环和时钟分相技术, 将一个16MHz 晶振作为时钟源, 经过锁相环 89429 升频得到68MHz 的时钟, 再经过分相芯片AMCCS4405 分成4 个相位, 如图3 所示。 我们只要从4 个相位的68MHz 时钟中选择出与数据同步性最好的一个。选择的依据是: 在每个数据帧的头部(HEAD) 都有一个8bit 的KWD (KeyWord) (如图1 所示) , 我们分别用 这4 个相位的时钟去锁存数据, 如果经某个时钟锁存后的数据在这个指定位置最先检测出这 个KWD, 就认为下一相位的时钟与数据的同步性最好(相关)。 根据这个判别原理, 我们设计了图4 所示的时钟分相选择电路。 在板上通过锁相环89429 和分相芯片S4405 获得我们所要的68MHz 4 相时钟: 用这4 个 时钟分别将输入数据进行移位, 将移位的数据与KWD 作比较, 若至少有7bit 符合, 则认为检 出了KWD。将4 路相关器的结果经过优先判选控制逻辑, 即可输出同步性最好的时钟。这里, 我们运用AMCC 公司生产的 S4405 芯片, 对68MHz 的时钟进行了4 分 相, 成功地实现了同步时钟的获取, 这部分 电路目前已实际地应用在某通讯系统的接 入网中。 2. 2 高速数据采集系统中的应用 高速、高精度的模拟- 数字变换 (ADC) 一直是高速数据采集系统的关键部 分。高速的ADC 价格昂贵, 而且系统设计 难度很高。以前就有人考虑使用多个低速 图5 分相技术应用于采集系统 ADC 和时钟分相, 用以替代高速的ADC, 但由 于时钟分相电路产生的相位不准确, 时钟的 J itters 和Skew 比较大(如前述) , 容易产生较 大的孔径晃动(Aperture J itters) , 无法达到很 好的时间分辨。 现在使用时钟分相芯片, 我们可以把分相 技术应用在高速数据采集系统中: 以4 分相后 图6 分相技术提高系统的数据采集率 的80MHz 采样时钟分别作为ADC 的 转换时钟, 对模拟信号进行采样, 如图5 所示。 在每一采集通道中, 输入信号经过 缓冲、调理, 送入ADC 进行模数转换, 采集到的数据写入存储器(M EM )。各个 采集通道采集的是同一信号, 不过采样 点依次相差90°相位。通过存储器中的数 据重组, 可以使系统时钟为80MHz 的采 集系统达到320MHz 数据采集率(如图6 所示)。 3 总结 灵活地运用时钟分相技术, 可以有效地用低频时钟实现相当于高频时钟的时间性能, 并 避免了高速数字电路设计中一些问题, 降低了系统设计的难度。

    标签: 时钟 分相 技术应用

    上传时间: 2013-12-17

    上传用户:xg262122