本书的核心内容是关于半导体器件和有源电路的模拟电子电路基础。两位作者Robert L.Boylestad和Louis Nashelsky都是在大学从事电路分析、电子电路基础等相关学科教学的资深教授,在电子电路学科领域出版了多部优秀教材,受到很高的评价。本书自1972年首次出版至今已经修订至第九版,涵盖了更广泛和新颖的内容,成为流行30多年的优秀经典教材。这本改编版在第九版原版内容的基础上,结合国内高等教育中模拟电子电路课程的特点,进行了部分内容的调整。 内容提要 本书是英文原版教材Electronic Devices and Circuit Theory,Ninth.Edition之英文改编版《模拟电子技术》的翻译版,内容包括半导体器件基础、二极管及其应用电路、晶体管和场效应管放大电路的基本原理及频率响应、功率放大电路、多级放大电路、差分放大电路、电流源等模拟集成电路的单元电路、反馈电路、模拟集成运算放大器、电压比较器和波形变换电路等。本书对原版教材进行了改编,精简了内容,突出了重点,补充了必要知识点,内容更加新颖和系统化,反映了器件和应用的发展趋势,强调了系统工程的概念。 本书与英文版教材配套使用,适合电子、计算机、通信等相关专业电子电路基础课程40学时到68学时的中文或双语教学要求,也可供相关专业工程技术人员的学习和参考。
标签: 模拟电子
上传时间: 2022-03-21
上传用户:
本设计以 STM32 单片机和 AD7791 实现电子秤的设计。设计采用电阻式应变片组成应变电桥的称重传感器采集重量的电压信号,采用两个零漂移放大器 ADA4528 组成了前端差分放大电路,设计采用了差分滤波器和共模滤波器,有效抑制了进入模数转换模块 AD7791 中的噪声,STM32 通过 SPI 接口控制 AD7791 进行数据 A/D 转换,读取和数据处理,在 LCD 显示屏显示测量结果。经过实际测试,称重传感器测量范围在 1g ~ 6KG 之间,测量范围在 10g 内时测量误差能达到 0.2g 之内。
上传时间: 2022-05-07
上传用户:
差分时钟EMC设计标准电路,内有电路图,详实!
上传时间: 2013-04-24
上传用户:muyehuli
差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,差分线大多为电路中最关键的信号,差分线布线的好坏直接影响到PCB板子信号质量。
标签: Differential Allegro Signal 差分信号
上传时间: 2013-09-04
上传用户:jennyzai
图1所示电路可将高频单端输入信号转换为平衡差分信号,用于驱动16位10 MSPS PulSAR® ADC AD7626。该电路采用低功耗差分放大器ADA4932-1来驱动ADC,最大限度提升AD7626的高频输入信号音性能。此器件组合的真正优势在于低功耗、高性能
上传时间: 2013-10-21
上传用户:佳期如梦
差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,差分线大多为电路中最关键的信号,差分线布线的好坏直接影响到PCB板子信号质量。
标签: Differential Signal 差分信号 中的应用
上传时间: 2014-01-25
上传用户:zhaoq123
项目的研究内容是对硅微谐振式加速度计的数据采集电路开展研究工作。硅微谐振式加速度计敏感结构输出的是两路差分的频率信号,因此硅微谐振式加速度计数据采集电路完成的主要任务是测出两路频率信号的差值。测量要求是:实现10ms内对中心谐振频率为20kHz、标度因数为100Hz/g、量程为±50g、分辨率为1mg的硅微谐振式加速度计输出的频率信号的测量,等效测量误差为±1mg。电路的控制核心为单片机,具有串行接口以便将测量结果传送给PC机从而分析、保存测量结果。 按研究内容设计了软硬件。软件采用多周期同步法实现高精度,快速度的频率测量方案,并使用CPLD编程实现,这也是最难的地方。硬件采用现在流行的3.3V供电系统,选用EPM240T100C5N和较为实用的AVR单片机芯片Atmega64L,对应3.3V供电系统,串行接口使用MAX3232。 最后完成了PCB板的制作,经反复调试后得到了非常好的效果。采集的数据满足项目研究内容中的要求,当提高有源晶振的频率时,精度有大大提高了,此时已远远满足了项目中高精度,快速度测量的要求。另外,采用MFC编程编写了上位机的数据接收和数据处理专用软件,集数据采集,运算,作图,保存功能于一体。 此为CPLD语言部分
上传时间: 2013-12-09
上传用户:奇奇奔奔
项目的研究内容是对硅微谐振式加速度计的数据采集电路开展研究工作。硅微谐振式加速度计敏感结构输出的是两路差分的频率信号,因此硅微谐振式加速度计数据采集电路完成的主要任务是测出两路频率信号的差值。测量要求是:实现10ms内对中心谐振频率为20kHz、标度因数为100Hz/g、量程为±50g、分辨率为1mg的硅微谐振式加速度计输出的频率信号的测量,等效测量误差为±1mg。电路的控制核心为单片机,具有串行接口以便将测量结果传送给PC机从而分析、保存测量结果。 按研究内容设计了软硬件。软件采用多周期同步法实现高精度,快速度的频率测量方案,并使用CPLD编程实现,这也是最难的地方。硬件采用现在流行的3.3V供电系统,选用EPM240T100C5N和较为实用的AVR单片机芯片Atmega64L,对应3.3V供电系统,串行接口使用MAX3232。 最后完成了PCB板的制作,经反复调试后得到了非常好的效果。采集的数据满足项目研究内容中的要求,当提高有源晶振的频率时,精度有大大提高了,此时已远远满足了项目中高精度,快速度测量的要求。另外,采用MFC编程编写了上位机的数据接收和数据处理专用软件,集数据采集,运算,作图,保存功能于一体。 此为上位机程序部分
上传时间: 2017-02-13
上传用户:大三三
该文档为功放差分电路讲解文档,是一份很不错的参考资料,具有较高参考价值,感兴趣的可以下载看看………………
上传时间: 2022-01-24
上传用户:
DVI(Digital Visual Interface),是1999年由Silicon Im-age、lntel(英特尔)、Compaq(康柏)、IBM、HP(惠普)、NEC、Fujitsu(富士通)等公司共同组成的数字显示工作组DDWG(Digital Display Working Group)推出的接口标准,其外观是一个24针的接插件(中-1。DVI接口采用高速串行的方式传输数据,在正常的使用情况下,DVI传输从计算机引出后直接连接到显示终蜡,中间只经过两对匹配的连接器和长度比较短的DVI线缆,DVI信号在这种情况下的传输一般都不会存在什么问题。当前在工业控制等恶劣环境领域DVI接口的使用频率也越来越频繁,在工业控制环境下,DVI传输需要经过除标准传输线缆外的其它环境,如底板、转接线等,传输线的长度也可能比较长,而且当前在工业控制领域基于DVI接口的电路基本上仍然采用原有的VGA接口电路的方式进行设计,在信号引出时仍采用传统连接器,而不是专用的差分连接器。以上这些情况都导致在工业控制环境下DVI信号传输经常出现信号完整性问题]。本文针对常见的DVI信号完整性问题,提出了基于电路仿真的解决方法,并结合具体的硬件平台详细说明了该方法的实现过程。使用基于电路仿真的方法可以得到DVI传输的极限情况,合理为设计留有裕度。最后通过高速示波器对电路的测试验证了仿真方法
上传时间: 2022-06-18
上传用户: