含原理图+电路图+程序的波形发生器:在工作中,我们常常会用到波形发生器,它是使用频度很高的电子仪器。现在的波形发生器都采用单片机来构成。单片机波形发生器是以单片机核心,配相应的外围电路和功能软件,能实现各种波形发生的应用系统,它由硬件部分和软件部分组成,硬件是系统的基础,软件则是在硬件的基础上,对其合理的调配和使用,从而完成波形发生的任务。 波形发生器的技术指标:(1) 波形类型:方型、正弦波、三角波、锯齿波;(2) 幅值电压:1V、2V、3V、4V、5V;(3) 频率值:10HZ、20HZ、50HZ、100HZ、200HZ、500HZ、1KHZ;(4) 输出极性:双极性操作设计1、 机器通电后,系统进行初始化,LED在面板上显示6个0,表示系统处于初始状态,等待用户输入设置命令,此时,无任何波形信号输出。2、 用户按下“F”、“V”、“W”,可以分别进入频率,幅值波形设置,使系统进入设置状态,相应的数码管显示“一”,此时,按其它键,无效;3、 在进入某一设置状态后,输入0~9等数字键,(数字键仅在设置状态时,有效)为欲输出的波形设置相应参数,LED将参数显示在面板上;4、 如果在设置中,要改变已设定的参数,可按下“CL”键,清除所有已设定参数,系统恢复初始状态,LED显示6个0,等待重新输入命令;5、 当必要的参数设定完毕后,所有参数显示于LED上,用户按下“EN”键,系统会将各波形参数传递到波形产生模块中,以便控制波形发生,实现不同频率,不同电压幅值,不同类型波形的输出;6、 用户按下“EN”键后,波形发生器开始输出满足参数的波形信号,面板上相应类型的运行指示灯闪烁,表示波形正在输出,LED显示波形类型编号,频率值、电压幅值等波形参数;7、 波形发生器在输出信号时,按下任意一个键,就停止波形信号输出,等待重新设置参数,设置过程如上所述,如果不改变参数,可按下“EN”键,继续输出原波形信号;8、 要停止波形发生器的使用,可按下复位按钮,将系统复位,然后关闭电源。硬件组成部分通过综合比较,决定选用获得广泛应用,性能价格高的常用芯片来构成硬件电路。单片机采用MCS-51系列的89C51(一块),74LS244和74LS373(各一块),反相驱动器 ULN2803A(一块),运算放大器 LM324(一块) 波形发生器的硬件电路由单片机、键盘显示器接口电路、波形转换(D/ A)电路和电源线路等四部分构成。1.单片机电路功能:形成扫描码,键值识别,键功能处理,完成参数设置;形成显示段码,向LED显示接口电路输出;产生定时中断;形成波形的数字编码,并输出到D/A接口电路;如电路原理图所示: 89C51的P0口和P2口作为扩展I/O口,与8255、0832、74LS373相连接,可寻址片外的寄存器。单片机寻址外设,采用存储器映像方式,外部接口芯片与内部存储器统一编址,89C51提供16根地址线P0(分时复用)和P2,P2口提供高8位地址线,P0口提供低8位地址线。P0口同时还要负责与8255,0832的数据传递。P2.7是8255的片选信号,P2.6是0832(1)的片选,P2.5是0832(2)的片选,低电平有效,P0.0、P0.1经过74LS373锁存后,送到8255的A1、A2作,片内A口,B口,C口,控制口等寄存器的字选。89C51的P1口的低4位连接4只发光三极管,作为波形类型指示灯,表示正在输出的波形是什么类型。单片机89C51内部有两个定时器/计数器,在波形发生器中使用T0作为中断源。不同的频率值对应不同的定时初值,定时器的溢出信号作为中断请求。控制定时器中断的特殊功能寄存器设置如下:定时控制寄存器TCON=(00010000)工作方式选择寄存器(TMOD)=(00000000)中断允许控制寄存器(IE)=(10000010)2、键盘显示器接口电路功能:驱动6位数码管动态显示; 提供响应界面; 扫面键盘; 提供输入按键。由并口芯片8255,锁存器74LS273,74LS244,反向驱动器ULN2803A,6位共阴极数码管(LED)和4×4行列式键盘组成。8255的C口作为键盘的I/O接口,C口的低4位输出到扫描码,高4位作为输入行状态,按键的分布如图所示。8255的A口作为LED段码输出口,与74LS244相连接,B口作为LED的位选信号输出口,与ULN2803A相连接。8255内部的4个寄存器地址分配如下:控制口:7FFFH , A口:7FFFCH , B口:7FFDH , C口:7FFEH 3、D/A电路功能:将波形样值的数字编码转换成模拟值;完成单极性向双极性的波形输出;构成由两片0832和一块LM324运放组成。0832(1)是参考电压提供者,单片机向0832(1)内的锁存器送数字编码,不同的编码会产生不同的输出值,在本发生器中,可输出1V、2V、3V、4V、5V等五个模拟值,这些值作为0832(2)的参考电压,使0832(2)输出波形信号时,其幅度是可调的。0832(2)用于产生各种波形信号,单片机在波形产生程序的控制下,生成波形样值编码,并送到0832(2)中的锁存器,经过D/A转换,得到波形的模拟样值点,假如N个点就构成波形的一个周期,那么0832(2)输出N个样值点后,样值点形成运动轨迹,就是波形信号的一个周期。重复输出N个点后,由此成第二个周期,第三个周期……。这样0832(2)就能连续的输出周期变化的波形信号。运放A1是直流放大器,运放A2是单极性电压放大器,运放A3是双极性驱动放大器,使波形信号能带得起负载。地址分配:0832(1):DFFFH ,0832(2):BFFFH4、电源电路:功能:为波形发生器提供直流能量;构成由变压器、整流硅堆,稳压块7805组成。220V的交流电,经过开关,保险管(1.5A/250V),到变压器降压,由220V降为10V,通过硅堆将交流电变成直流电,对于谐波,用4700μF的电解电容给予滤除。为保证直流电压稳定,使用7805进行稳压。最后,+5V电源配送到各用电负载。
上传时间: 2013-11-08
上传用户:685
PC机之间串口通信的实现一、实验目的 1.熟悉微机接口实验装置的结构和使用方法。 2.掌握通信接口芯片8251和8250的功能和使用方法。 3.学会串行通信程序的编制方法。 二、实验内容与要求 1.基本要求主机接收开关量输入的数据(二进制或十六进制),从键盘上按“传输”键(可自行定义),就将该数据通过8251A传输出去。终端接收后在显示器上显示数据。具体操作说明如下:(1)出现提示信息“start with R in the board!”,通过调整乒乓开关的状态,设置8位数据;(2)在小键盘上按“R”键,系统将此时乒乓开关的状态读入计算机I中,并显示出来,同时显示经串行通讯后,计算机II接收到的数据;(3)完成后,系统提示“do you want to send another data? Y/N”,根据用户需要,在键盘按下“Y”键,则重复步骤(1),进行另一数据的通讯;在键盘按除“Y”键外的任意键,将退出本程序。2.提高要求 能够进行出错处理,例如采用奇偶校验,出错重传或者采用接收方回传和发送方确认来保证发送和接收正确。 三、设计报告要求 1.设计目的和内容 2.总体设计 3.硬件设计:原理图(接线图)及简要说明 4.软件设计框图及程序清单5.设计结果和体会(包括遇到的问题及解决的方法) 四、8251A通用串行输入/输出接口芯片由于CPU与接口之间按并行方式传输,接口与外设之间按串行方式传输,因此,在串行接口中,必须要有“接收移位寄存器”(串→并)和“发送移位寄存器”(并→串)。能够完成上述“串←→并”转换功能的电路,通常称为“通用异步收发器”(UART:Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251。8251A异步工作方式:如果8251A编程为异步方式,在需要发送字符时,必须首先设置TXEN和CTS#为有效状态,TXEN(Transmitter Enable)是允许发送信号,是命令寄存器中的一位;CTS#(Clear To Send)是由外设发来的对CPU请求发送信号的响应信号。然后就开始发送过程。在发送时,每当CPU送往发送缓冲器一个字符,发送器自动为这个字符加上1个起始位,并且按照编程要求加上奇/偶校验位以及1个、1.5个或者2个停止位。串行数据以起始位开始,接着是最低有效数据位,最高有效位的后面是奇/偶校验位,然后是停止位。按位发送的数据是以发送时钟TXC的下降沿同步的,也就是说这些数据总是在发送时钟TXC的下降沿从8251A发出。数据传输的波特率取决于编程时指定的波特率因子,为发送器时钟频率的1、1/16或1/64。当波特率指定为16时,数据传输的波特率就是发送器时钟频率的1/16。CPU通过数据总线将数据送到8251A的数据输出缓冲寄存器以后,再传输到发送缓冲器,经移位寄存器移位,将并行数据变为串行数据,从TxD端送往外部设备。在8251A接收字符时,命令寄存器的接收允许位RxE(Receiver Enable)必须为1。8251A通过检测RxD引脚上的低电平来准备接收字符,在没有字符传送时RxD端为高电平。8251A不断地检测RxD引脚,从RxD端上检测到低电平以后,便认为是串行数据的起始位,并且启动接收控制电路中的一个计数器来进行计数,计数器的频率等于接收器时钟频率。计数器是作为接收器采样定时,当计数到相当于半个数位的传输时间时再次对RxD端进行采样,如果仍为低电平,则确认该数位是一个有效的起始位。若传输一个字符需要16个时钟,那么就是要在计数8个时钟后采样到低电平。之后,8251A每隔一个数位的传输时间对RxD端采样一次,依次确定串行数据位的值。串行数据位顺序进入接收移位寄存器,通过校验并除去停止位,变成并行数据以后通过内部数据总线送入接收缓冲器,此时发出有效状态的RxRDY信号通知CPU,通知CPU8251A已经收到一个有效的数据。一个字符对应的数据可以是5~8位。如果一个字符对应的数据不到8位,8251A会在移位转换成并行数据的时候,自动把他们的高位补成0。 五、系统总体设计方案根据系统设计的要求,对系统设计的总体方案进行论证分析如下:1.获取8位开关量可使用实验台上的8255A可编程并行接口芯片,因为只要获取8位数据量,只需使用基本输入和8位数据线,所以将8255A工作在方式0,PA0-PA7接实验台上的8位开关量。2.当使用串口进行数据传送时,虽然同步通信速度远远高于异步通信,可达500kbit/s,但由于其需要有一个时钟来实现发送端和接收端之间的同步,硬件电路复杂,通常计算机之间的通信只采用异步通信。3.由于8251A本身没有时钟,需要外部提供,所以本设计中使用实验台上的8253芯片的计数器2来实现。4:显示和键盘输入均使用DOS功能调用来实现。设计思路框图,如下图所示: 六、硬件设计硬件电路主要分为8位开关量数据获取电路,串行通信数据发送电路,串行通信数据接收电路三个部分。1.8位开关量数据获取电路该电路主要是利用8255并行接口读取8位乒乓开关的数据。此次设计在获取8位开关数据量时采用8255令其工作在方式0,A口输入8位数据,CS#接实验台上CS1口,对应端口为280H-283H,PA0-PA7接8个开关。2.串行通信电路串行通信电路本设计中8253主要为8251充当频率发生器,接线如下图所示。
上传时间: 2013-12-19
上传用户:小火车啦啦啦
本文档将深入介绍内部时钟源模块(Internal ClockSource, ICS),该模块可以在部分HCS08 系列微控制器中找到。对HCS08 MCU 来说, ICS 模块不但是一个非常灵活的时钟源,而且对于该系列中更小、更低成本的MCU来说非常经济。ICS 包括锁频环、内部时钟参考、外部振荡器和时钟选择子模块。这些子模块组合可以提供多种时钟模式和频率,以满足任何应用的需要。本应用笔记详细描述ICS 的7 种工作模式、ICS 模块与其他HCS08 MCU 的内部时钟发生器(Internal ClockGenerator, ICG)模块作比较、ICS 模块从不同低功耗模式下恢复的特性及内部时钟参考的校准方法。
上传时间: 2013-11-08
上传用户:zhuoying119
3.1 总线与接口概述 3.1.1 总线和接口及其标准的概念 总线:是在模块和模块之间或设备与设备之间的一组进行互连和传输信息的信号线,信息包括指令、数据和地址。 总线标准 指芯片之间、扩展卡之间以及系统之间,通过总线进行连接和传输信息时,应该遵守的一些协议与规范。 接口标准 外设接口的规范,涉及接口信号线定义、信号传输速率、传输方向和拓扑结构,以及电气特性和机械特性等多个方面。 3.1.2 总线的分类 1) 按总线功能或信号类型划分为: 数据总线:双向三态逻辑,线宽表示了总线数据传输的能力。地址总线:单向三态逻辑,线宽决定了系统的寻址能力。控制总线:就某根来说是单向或双向。控制总线最能体现总线特点,决定总线功能的强弱和适应性。2) 按总线的层次结构分为: CPU总线:微机系统中速度最快的总线,主要在CPU内部,连接CPU内部部件,在CPU周围的小范围内也分布该总线,提供系统原始的控制和命令。局部总线:在系统总线和CPU总线之间的一级总线,提供CPU和主板器件之间以及CPU到高速外设之间的快速信息通道。系统总线:也称为I/O总线,是传统的通过总线扩展卡连接外部设备的总线。由于速度慢,其功能已经被局部总线替代。通信总线:也称为外部总线,是微机与微机,微机与外设之间进行通信的总线。3.1.3 总线的主要性能参数1.总线频率:MHz表示的工作频率,是总线速率的一个重要参数。2.总线宽度:指数据总线的位数。3.总线的数据传输率 总线的数据传输率=(总线宽度/8位)×总线频率 例:PCI总线的总线频率为33.3MHz,总线宽度为64位的情况下,总线数据传输率为266MB/s 。
上传时间: 2013-11-17
上传用户:shen954166632
Keil C51 中文说明:8051 系列微处理器基于简化的嵌入式控制系统结构被广泛应用于从军事到自动控制再到PC 机上的键盘上的各种应用系统上仅次于Motorola 68HC11 在 8 位微控制器市场上的销量很多制造商都可提供8051 系列单片机像Intel Philips Siemens 等这些制造商给51 系列单片机加入了大量的性能和外部功能像I2C 总线接口模拟量到数字量的转换看门狗PWM 输出等不少芯片的工作频率达到40M 工作电压下降到1.5V 基于一个内核的这些功能使得8051 单片机很适合作为厂家产品的基本构架它能够运行各种程序而且开发者只需要学习这一个平台8051 系列的基本结构如下1 一个8 位算术逻辑单元2 32 个I/O 口4 组8 位端口可单独寻址3 两个16 位定时计数器4 全双工串行通信5 6 个中断源两个中断优先级6 128 字节内置RAM7 独立的64K 字节可寻址数据和代码区每个8051 处理周期包括12 个振荡周期每12 个振荡周期用来完成一项操作如取指令和计算指令执行时间可把时钟频率除以12 取倒数然后指令执行所须的周期数因此如果你的系统时钟是11.059MHz 除以12 后就得到了每秒执行的指令个数为921583条指令取倒数将得到每条指令所须的时间1.085ms.
上传时间: 2013-10-24
上传用户:xauthu
微型计算机课程设计论文—通用微机发声程序的汇编设计 本文讲述了在微型计算机中利用可编程时间间隔定时器的通用发声程序设计,重点讲述了程序的发声原理,节拍的产生,按节拍改变的动画程序原理,并以设计一个简单的乐曲评分程序为引子,分析程序设计的细节。关键字:微机 8253 通用发声程序 动画技术 直接写屏 1. 可编程时间间隔定时器8253在通用个人计算机中,有一个可编程时间间隔定时器8253,它能够根据程序提供的计数值和工作方式,产生各种形状和各种频率的计数/定时脉冲,提供给系统各个部件使用。本设计是利用计算机控制发声的原理,编写演奏乐曲的程序。 在8253/54定时器内部有3个独立工作的计数器:计数器0,计数器1和计数器2,每个计数器都分配有一个断口地址,分别为40H,41H和42H.8253/54内部还有一个公用的控制寄存器,端地址为43H.端口地址输入到8253/54的CS,AL,A0端,分别对3个计数器和控制器寻址. 对8353/54编程时,先要设定控制字,以选择计数器,确定工作方式和计数值的格式.每计数器由三个引脚与外部联系,见教材第320页图9-1.CLK为时钟输入端,GATE为门控信号输入端,OUT为计数/定时信号输入端.每个计数器中包含一个16位计数寄存器,这个计数器时以倒计数的方式计数的,也就是说,从计数初值逐次减1,直到减为0为止. 8253/54的三个计数器是分别编程的,在对任一个计数器编程时,必须首先讲控制字节写入控制寄存器.控制字的作用是告诉8253/54选择哪个计数器工作,要求输出什么样的脉冲波形.另外,对8253/54的初始化工作还包括,向选定的计数器输入一个计数初值,因为这个计数值可以是8为的,也可以是16为的,而8253/5的数据总线是8位的,所以要用两条输出指令来写入初值.下面给出8253/54初始化程序段的一个例子,将计数器2设定为方式3,(关于计数器的工作方式参阅教材第325—330页)计数初值为65536. MOV AL,10110110B ;选择计数器2,按方式3工作,计数值是二进制格式 OUT 43H,AL ; j将控制字送入控制寄存器 MOV AL,0 ;计数初值为0 OUT 42H,AL ;将计数初值的低字节送入计数器2 OUT 42H,AL ;将计数初值的高字节送入计数器2 在IBM PC中8253/54的三个时钟端CLK0,CLK1和CLK2的输入频率都是1.1931817MHZ. PC机上的大多数I/O都是由主板上的8255(或8255A)可编程序外围接口芯片(PPI)管理的.关于8255A的结构和工作原理及应用举例参阅教材第340—373页.教材第364页的”PC/XT机中的扬声器接口电路”一节介绍了扬声器的驱动原理,并给出了通用发声程序.本设计正是基于这个原理,通过编程,控制加到扬声器上的信号的频率,奏出乐曲的.2.发声程序的设计下面是能产生频率为f的通用发声程序:MOV AL, 10110110B ;8253控制字:通道2,先写低字节,后写高字节 ;方式3,二进制计数OUT 43H, AL ;写入控制字MOV DX, 0012H ;被除数高位MOV AX, 35DEH ;被除数低位 DIV ID ;求计数初值n,结果在AX中OUT 42H, AL ;送出低8位MOV AL, AHOUT 42H,AL ;送出高8位IN AL, 61H ;读入8255A端口B的内容MOV AH, AL ;保护B口的原状态OR AL, 03H ;使B口后两位置1,其余位保留OUT 61H,AL ;接通扬声器,使它发声
上传时间: 2013-10-17
上传用户:sunjet
通用的多电源总线,如VME、VXI 和PCI 总线,都可提供功率有限的3.3V、5V 和±12V(或±24V)电源,如果在这些系统中添加设备(如插卡等),则需要额外的3.3V或5V电源,这个电源通常由负载较轻的-12V电源提供。图1 电路,将-12V 电压升压到15.3V(相对于-12V 电压),进而得到3.3V 的电源电压,输出电流可达300mA。Q2 将3.3V 电压转换成适当的电压(-10.75V)反馈给IC1 的FB 引脚,PWM 升压控制器可提供1W 的输出功率,转换效率为83%。整个电路大约占6.25Cm2的线路板尺寸,适用于依靠台式PC机电源供电,需要提供1W输出功率的应用,这种应用中,由于-12V总线电压限制在1.2W以内,因此需要保证高于83%的转换效率。由于限流电阻(RSENSE)将峰值电流限制在120mA,N 沟道MOSFET(Q1)可选用廉价的逻辑电平驱动型场效应管,R1、R2 设置输出电压(3.3V 或5V)。IC1 平衡端(Pin5)的反馈电压高于PGND引脚(Pin7)1.25V,因此:VFB = -12V + 1.25V = - 10.75V选择电阻R1后,可确定:I2 = 1.25V / R1 = 1.25V / 12.1kΩ = 103μA可由下式确定R2:R2 = (VOUT - VBE)/ I2 =(3.3V - 0.7V)/ 103μA = 25.2 kΩ图1 中,IC1 的开关频率允许通过外部电阻设置,频率范围为100kHz 至500kHz,有利于RF、数据采集模块等产品的设计。当选择较高的开关频率时,能够保证较高的转换效率,并可选用较小的电感和电容。为避免电流倒流,可在电路中增加一个与R1串联的二极管。
上传时间: 2013-10-17
上传用户:jixingjie
计算机部件要具有通用性,适应不同系统与不同用户的需求,设计必须模块化。计算机部件产品(模块)供应出现多元化。模块之间的联接关系要标准化,使模块具有通用性。模块设计必须基于一种大多数厂商认可的模块联接关系,即一种总线标准。总线的标准总线是一类信号线的集合是模块间传输信息的公共通道,通过它,计算机各部件间可进行各种数据和命令的传送。为使不同供应商的产品间能够互换,给用户更多的选择,总线的技术规范要标准化。总线的标准制定要经周密考虑,要有严格的规定。总线标准(技术规范)包括以下几部分:机械结构规范:模块尺寸、总线插头、总线接插件以及按装尺寸均有统一规定。功能规范:总线每条信号线(引脚的名称)、功能以及工作过程要有统一规定。电气规范:总线每条信号线的有效电平、动态转换时间、负载能力等。总线的发展情况S-100总线:产生于1975年,第一个标准化总线,为微计算机技术发展起到了推动作用。IBM-PC个人计算机采用总线结构(Industry Standard Architecture, ISA)并成为工业化的标准。先后出现8位ISA总线、16位ISA总线以及后来兼容厂商推出的EISA(Extended ISA)32位ISA总线。为了适应微处理器性能的提高及I/O模块更高吞吐率的要求,出现了VL-Bus(VESA Local Bus)和PCI(Peripheral Component Interconnect,PCI)总线。适合小型化要求的PCMCIA(Personal Computer Memory Card International Association)总线,用于笔记本计算机的功能扩展。总线的指标计算机主机性能迅速提高,各功能模块性能也要相应提高,这对总线性能提出更高的要求。总线主要技术指标有几方面:总线宽度:一次操作可以传输的数据位数,如S100为8位,ISA为16位,EISA为32位,PCI-2可达64位。总线宽度不会超过微处理器外部数据总线的宽度。总数工作频率:总线信号中有一个CLK时钟,CLK越高每秒钟传输的数据量越大。ISA、EISA为8MHz,PCI为33.3MHz, PCI-2可达达66.6MHz。单个数据传输周期:不同的传输方式,每个数据传输所用CLK周期数不同。ISA要2个,PCI用1个CLK周期。这决定总线最高数据传输率。5. 总线的分类与层次系统总线:是微处理器芯片对外引线信号的延伸或映射,是微处理器与片外存储器及I/0接口传输信息的通路。系统总线信号按功能可分为三类:地址总线(Where):指出数据的来源与去向。地址总线的位数决定了存储空间的大小。系统总线:数据总线(What)提供模块间传输数据的路径,数据总线的位数决定微处理器结构的复杂度及总体性能。控制总线(When):提供系统操作所必需的控制信号,对操作过程进行控制与定时。扩充总线:亦称设备总线,用于系统I/O扩充。与系统总线工作频率不同,经接口电路对系统总统信号缓冲、变换、隔离,进行不同层次的操作(ISA、EISA、MCA)局部总线:扩充总线不能满足高性能设备(图形、视频、网络)接口的要求,在系统总线与扩充总线之间插入一层总线。由于它经桥接器与系统总线直接相连,因此称之为局部总线(PCI)。
上传时间: 2013-11-09
上传用户:nshark
单片机基础知识单片机的外部结构:1、 DIP40双列直插;2、 P0,P1,P2,P3四个8位准双向I/O引脚;(作为I/O输入时,要先输出高电平)3、 电源VCC(PIN40)和地线GND(PIN20);4、 高电平复位RESET(PIN9);(10uF电容接VCC与RESET,即可实现上电复位)5、 内置振荡电路,外部只要接晶体至X1(PIN18)和X0(PIN19);(频率为主频的12倍)6、 程序配置EA(PIN31)接高电平VCC;(运行单片机内部ROM中的程序)7、 P3支持第二功能:RXD、TXD、INT0、INT1、T0、T1 单片机内部I/O部件:(所为学习单片机,实际上就是编程控制以下I/O部件,完成指定任务)1、 四个8位通用I/O端口,对应引脚P0、P1、P2和P3;2、 两个16位定时计数器;(TMOD,TCON,TL0,TH0,TL1,TH1)3、 一个串行通信接口;(SCON,SBUF)4、 一个中断控制器;(IE,IP)针对AT89C52单片机,头文件AT89x52.h给出了SFR特殊功能寄存器所有端口的定义。教科书的160页给出了针对MCS51系列单片机的C语言扩展变量类型。 C语言编程基础:1、 十六进制表示字节0x5a:二进制为01011010B;0x6E为01101110。2、 如果将一个16位二进数赋给一个8位的字节变量,则自动截断为低8位,而丢掉高8位。3、 ++var表示对变量var先增一;var—表示对变量后减一。4、 x |= 0x0f;表示为 x = x | 0x0f;5、 TMOD = ( TMOD & 0xf0 ) | 0x05;表示给变量TMOD的低四位赋值0x5,而不改变TMOD的高四位。6、 While( 1 ); 表示无限执行该语句,即死循环。语句后的分号表示空循环体,也就是{;}第一章 单片机最小应用系统:单片机最小系统的硬件原理接线图:1、 接电源:VCC(PIN40)、GND(PIN20)。加接退耦电容0.1uF2、 接晶体:X1(PIN18)、X2(PIN19)。注意标出晶体频率(选用12MHz),还有辅助电容30pF3、 接复位:RES(PIN9)。接上电复位电路,以及手动复位电路,分析复位工作原理4、 接配置:EA(PIN31)。说明原因。第二章 基本I/O口的应用第三章 显示驱动第七章 串行接口应用
标签: 单片机
上传时间: 2013-10-30
上传用户:athjac
摘要:以单片机89C51 为核心设计了一种频率计。在设计中应用单片机的数学运算和控制功能,实现了测量量程的自动切换,既满足测量精度的要求,又满足系统反应时间的要求。关键词:频率测量;单片机;数据处理 频率计由单片机89C51 、信号予处理电路、串行通信电路、测量数据显示电路和系统软件所组成,其中信号予处理电路包含待测信号放大、波形变换、波形整形和分频电路。系统硬件框图如图1 所示。信号予处理电路中的放大器实现对待测信号的放大,降低对待测信号的幅度要求;波形变换和波形整形电路实现把正弦波样的正负交替的信号波形变换成可被单片机接受的TTL/ CMOS 兼容信号;分频电路用于扩展单片机的频率测量范围并实现单片机频率测量和周期测量使用统一的输入信号。
上传时间: 2013-10-16
上传用户:几何公差