虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

外部存储器

外储存器是指除计算机内存及CPU缓存以外的储存器,此类储存器一般断电后仍然能保存数据。常见的外存储器有硬盘、软盘、光盘、U盘等。
  • 单片机常用芯片和器件手册

    单片机常用芯片和器件手册 地址锁存器由于MCS-51单片机的P0口是分时复用的地址/数据总线,因此在进行程序存储器扩展时,必须利用地址锁存器将信号从地址/数据总线中分离开来。 常用的地址锁存器是: 74LS373828274LS273 存储器扩展MCS-51的程序存储器寻址空间为64k字节(0000H--FFFFH),其中8051、8751片内涵有4K字节的ROM或EPROM,8031片内部不带ROM。当片内ROM不够用或采用8031芯片时,需扩展程序存储器。MCS-51单片机访问外部程序存储器所使用的控制信号有:   ALE:低8位地址锁存控制;   PSEN:外部程序存储器“读取”控制。 常用的程序存储器有:   EPROM: 2716  2732  2764  27128   27256   EEPROM:2817  2864 MCS-51的数据存储器寻址空间为64k字节(0000H--FFFFH)。而8031单片机内部只有128个字节的RAM存储器。数据存储器只使用WR、RD控制线。 常用的数据存储器有:   静态RAM:6116  6264   动态RAM:2186

    标签: 单片机常用 芯片 器件手册

    上传时间: 2013-11-15

    上传用户:xiaowei314

  • C51使用手册

    C51使用手册 .pdf 第二节内存区域(Memory Areas)1. Pragram Area由Code 说明可有多达64kBytes 的程序存储器2. Internal Data Memory:内部数据存储器可用以下关键字说明data 直接寻址区为内部RAM 的低128 字节00H 7FHidata 间接寻址区 包括整个内部RAM 区00H FFHbdata 可位寻址区 20H 2FH3. External Data Memory外部RAM 视使用情况可由以下关键字标识xdata 可指定多达64KB 的外部直接寻址区地址范围0000H 0FFFFHpdata 能访问1 页(25bBytes)的外部RAM 主要用于紧凑模式(Compact Model)4. Speciac Function Register Memory

    标签: C51 使用手册

    上传时间: 2013-11-19

    上传用户:busterman

  • at91rm9200启动过程教程

    at91rm9200启动过程教程 系统上电,检测BMS,选择系统的启动方式,如果BMS为高电平,则系统从片内ROM启动。AT91RM9200的ROM上电后被映射到了0x0和0x100000处,在这两个地址处都可以访问到ROM。由于9200的ROM中固化了一个BOOTLOAER程序。所以PC从0X0处开始执行这个BOOTLOAER(准确的说应该是一级BOOTLOADER)。这个BOOTLOER依次完成以下步骤: 1、PLL SETUP,设置PLLB产生48M时钟频率提供给USB DEVICE。同时DEBUG USART也被初始化为48M的时钟频率; 2、相应模式下的堆栈设置; 3、检测主时钟源(Main oscillator); 4、中断控制器(AIC)的设置; 5、C 变量的初始化; 6、跳到主函数。 完成以上步骤后,我们可以认为BOOT过程结束,接下来的就是LOADER的过程,或者也可以认为是装载二级BOOTLOER。AT91RM9200按照DATAFLASH、EEPROM、连接在外部总线上的8位并行FLASH的顺序依次来找合法的BOOT程序。所谓合法的指的是在这些存储设备的开始地址处连续的存放的32个字节,也就是8条指令必须是跳转指令或者装载PC的指令,其实这样规定就是把这8条指令当作是异常向量表来处理。必须注意的是第6条指令要包含将要装载的映像的大小。关于如何计算和写这条指令可以参考用户手册。一旦合法的映像找到之后,则BOOT程序会把找到的映像搬到SRAM中去,所以映像的大小是非常有限的,不能超过16K-3K的大小。当BOOT程序完成了把合法的映像搬到SRAM的任务以后,接下来就进行存储器的REMAP,经过REMAP之后,SRAM从映设前的0X200000地址处被映设到了0X0地址并且程序从0X0处开始执行。而ROM这时只能在0X100000这个地址处看到了。至此9200就算完成了一种形式的启动过程。如果BOOT程序在以上所列的几种存储设备中找到合法的映像,则自动初始化DEBUG USART口和USB DEVICE口以准备从外部载入映像。对DEBUG口的初始化包括设置参数115200 8 N 1以及运行XMODEM协议。对USB DEVICE进行初始化以及运行DFU协议。现在用户可以从外部(假定为PC平台)载入你的映像了。在PC平台下,以WIN2000为例,你可以用超级终端来完成这个功能,但是还是要注意你的映像的大小不能超过13K。一旦正确从外部装载了映像,接下来的过程就是和前面一样重映设然后执行映像了。我们上面讲了BMS为高电平,AT91RM9200选择从片内的ROM启动的一个过程。如果BMS为低电平,则AT91RM9200会从片外的FLASH启动,这时片外的FLASH的起始地址就是0X0了,接下来的过程和片内启动的过程是一样的,只不过这时就需要自己写启动代码了,至于怎么写,大致的内容和ROM的BOOT差不多,不同的硬件设计可能有不一样的地方,但基本的都是一样的。由于片外FLASH可以设计的大,所以这里编写的BOOTLOADER可以一步到位,也就是说不用像片内启动可能需要BOOT好几级了,目前AT91RM9200上使用较多的bootloer是u-boot,这是一个开放源代码的软件,用户可以自由下载并根据自己的应用配置。总的说来,笔者以为AT91RM9200的启动过程比较简单,ATMEL的服务也不错,不但提供了片内启动的功能,还提供了UBOOT可供下载。笔者写了一个BOOTLODER从片外的FLASHA启动,效果还可以。 uboot结构与使用uboot是一个庞大的公开源码的软件。他支持一些系列的arm体系,包含常见的外设的驱动,是一个功能强大的板极支持包。其代码可以 http://sourceforge.net/projects/u-boot下载 在9200上,为了启动uboot,还有两个boot软件包,分别是loader和boot。分别完成从sram和flash中的一级boot。其源码可以从atmel的官方网站下载。 我们知道,当9200系统上电后,如果bms为高电平,则系统从片内rom启动,这时rom中固化的boot程序初始化了debug口并向其发送'c',这时我们打开超级终端会看到ccccc...。这说明系统已经启动,同时xmodem协议已经启动,用户可以通过超级终端下载用户的bootloader。作为第一步,我们下载loader.bin.loader.bin将被下载到片内的sram中。这个loder完成的功能主要是初始化时钟,sdram和xmodem协议,为下载和启动uboot做准备。当下载了loader.bin后,超级终端会继续打印:ccccc....。这时我们就可以下在uboot了。uboot将被下载到sdram中的一个地址后并把pc指针调到此处开始执行uboot。接着我们就可以在终端上看到uboot的shell启动了,提示符uboot>,用户可以uboot>help 看到命令列表和大概的功能。uboot的命令包含了对内存、flash、网络、系统启动等一些命令。 如果系统上电时bms为低电平,则系统从片外的flash启动。为了从片外的flash启动uboot,我们必须把boot.bin放到0x0地址出,使得从flash启动后首先执行boot.bin,而要少些boot.bin,就要先完成上面我们讲的那些步骤,首先开始从片内rom启动uboot。然后再利用uboot的功能完成把boot.bin和uboot.gz烧写到flash中的目的,假如我们已经启动了uboot,可以这样操作: uboot>protect off all uboot>erase all uboot>loadb 20000000 uboot>cp.b 20000000 10000000 5fff uboot>loadb 21000000 uboot>cp.b 210000000 10010000 ffff 然后系统复位,就可以看到系统先启动boot,然后解压缩uboot.gz,然后启动uboot。注意,这里uboot必须压缩成.gz文件,否则会出错。 怎么编译这三个源码包呢,首先要建立一个arm的交叉编译环境,关于如何建立,此处不予说明。建立好了以后,分别解压源码包,然后修改Makefile中的编译器项目,正确填写你的编译器的所在路径。 对loader和boot,直接make。对uboot,第一步:make_at91rm9200dk,第二步:make。这样就会在当前目录下分别生成*.bin文件,对于uboot.bin,我们还要压缩成.gz文件。 也许有的人对loader和boot搞不清楚为什么要两个,有什么区别吗?首先有区别,boot主要完成从flash中启动uboot的功能,他要对uboot的压缩文件进行解压,除此之外,他和loader并无大的区别,你可以把boot理解为在loader的基础上加入了解压缩.gz的功能而已。所以这两个并无多大的本质不同,只是他们的使命不同而已。 特别说名的是这三个软件包都是开放源码的,所以用户可以根据自己的系统的情况修改和配置以及裁减,打造属于自己系统的bootloder。

    标签: 9200 at 91 rm

    上传时间: 2013-10-27

    上传用户:wsf950131

  • ARM多端口存储器控制器PL176技术手册

     NXP半导体设计的LPC3000系列ARM芯片,适用于要求高性能和低功耗结合的嵌入式应用中。  NXP通过使用90纳米的处理技术,将一个带有矢量浮点协处理器的ARM926EJ-S CPU内核与一系列包括USB On-The-Go在内的标准外设结合起来,从而实现LPC3000的性能目标。LPC3000系列ARM可工作在高于266MHz的CPU频率下。ARM926EJ-S CPU内核加入5级流水处理并采用哈佛结构。该内核还具有一个完整的存储器管理单元(MMU),以提供支持现代操作系统多程序设计所需的虚拟存储器功能。ARM926EJ-S CPU内核还包含了带有单周期MAC操作的一系列DSP指令扩展,以及Jazelle Java字节代码执行。NXP实现的器件具有一个32kB指令高速缓存和32kB数据高速缓存。

    标签: ARM 176 PL 多端口

    上传时间: 2013-11-20

    上传用户:xiaowei314

  • 单片机I/O口的使用

    单片机I/O口的使用:对单片机的控制,其实就是对I/O口的控制,无论单片机对外界进行何种控制,亦或接受外部的控制,都是通过I/O口进行的。单片机总共有P0、P1、P2、P3四个8位双向输入输出端口,每个端口都有锁存器、输出驱动器和输入缓冲器。4个I/O端口都能作输入输出口用,其中P0和P2通常用于对外部存储器的访问。§4.1 MCS-51单片机的并行端口结构与操作 51系列单片机有4个I/O端口,每个端口都是8位准双向口,共占32根引脚。每个端口都包括一个锁存器(即专用寄存器P0~P3)、一个输出驱动器和输入缓冲器。通常把4个端口笼统地表示为P0~P3。

    标签: 单片机

    上传时间: 2013-11-06

    上传用户:zhouxuepeng1

  • 外部工具用户手册

    关键词外部工具,配置信息,xml,TKStudio,ExternTool摘 要外部工具信息配置是TKStudio集成开发环境提供的用于编辑外部工具配置信息的软件。该软件具有添加,删除和编辑外部工具配置信息的功能。

    标签: 外部工具 用户手册

    上传时间: 2014-12-28

    上传用户:bioequ

  • MSP430系列单片机C语言程序设计与开发

    MSP430系列单片机C语言程序设计与开发MSP430系列是一个具有明显技术特色的单片机品种。关于它的硬件特性及汇编语言程序设计已在《MSP430系列超低功耗16位单片机的原理与应用》及《MSP430系列 FLASH型超低功耗16位单片机》等书中作了全面介绍。《MSP430系列单片机C语言程序设计与开发》介绍IAR公司为MSP430系列单片机配备的C程序设计语言C430。书中叙述了C语言的基本概念、C430的扩展特性及C库函数;对C430的集成开发环境的使用及出错信息作了详尽的说明;并以MSP430F149为例,对各种应用问题及外围模块操作提供了典型的C程序例程,供读者在今后的C430程序设计中参考。   《MSP430系列单片机C语言程序设计与开发》可以作为高等院校计算机、自动化及电子技术类专业的教学参考书,也可作为工程技术人员设计开发时的技术资料。MSP430系列超低功耗16位单片机的原理与应用目录MSP430系列单片机C语言程序设计与开发 目录  第1章 C语言基本知识1.1 标识符与关键字11.1.1 标识符11.1.2 关键字11.2 数据基本类型21.2.1 整型数据21.2.2 实型数据31.2.3 字符型数据41.2.4 各种数据转换关系61.3 C语言的运算符71.3.1 算术运算符71.3.2 关系运算符和逻辑运算符71.3.3 赋值运算符81.3.4 逗号运算符81.3.5 ? 与 :运算符81.3.6 强制转换运算符91.3.7 各种运算符优先级列表91.4 程序设计的三种基本结构101.4.1 语句的概念101.4.2 顺序结构111.4.3 选择结构121.4.4 循环结构141.5 函数181.5.1 函数定义181.5.2 局部变量与全局变量191.5.3 形式参数与实际参数201.5.4 函数调用方式201.5.5 函数嵌套调用211.5.6 变量的存储类别221.5.7 内部函数和外部函数231.6 数组231.6.1 一维数组241.6.2 多维数组241.6.3 字符数组261.7 指针271.7.1 指针与地址的概念271.7.2 指针变量的定义281.7.3 指针变量的引用281.7.4 数组的指针281.7.5 函数的指针301.7.6 指针数组311.8 结构和联合321.8.1 结构定义321.8.2 结构类型变量的定义331.8.3 结构类型变量的初始化341.8.4 结构类型变量的引用341.8.5 联合341.9 枚举361.9.1 枚举的定义361.9.2 枚举元素的值371.9. 3 枚举变量的使用371.10 类型定义381.10.1 类型定义的形式381.10.2 类型定义的使用381.11 位运算391.11.1 位运算符391.11.2 位域401.12 预处理功能411.12.1 简单宏定义和带参数宏定义411.12.2 文件包含431.12.3 条件编译命令44第2章 C430--MSP430系列的C语言2.1 MSP430系列的C语言452.1.1 C430概述452.1.2 C430程序设计工作流程462.1.3 开始462.1.4 C430程序生成472.2 C430的数据表达482.2.1 数据类型482.2.2 编码效率502.3 C430的配置512.3.1 引言512.3. 2 存储器分配522.3.3 堆栈体积522.3.4 输入输出522.3.5 寄存器的访问542.3.6 堆体积542.3.7 初始化54第3章 C430的开发调试环境3.1 引言563.1.1 Workbench特性563.1.2 Workbench的内嵌编辑器特性563.1.3 C编译器特性573.1. 4 汇编器特性573.1.5 连接器特性583.1.6 库管理器特性583.1.7 C?SPY调试器特性593.2 Workbench概述593.2.1 项目管理模式593.2.2 选项设置603.2.3 建立项目603.2.4 测试代码613.2.5 样本应用程序613.3 Workbench的操作623.3.1 开始633.3.2 编译项目683.3.3 连接项目693.3.4 调试项目713.3.5 使用Make命令733.4 Workbench的功能汇总753.4.1 Workbench的窗口753.4.2 Workbench的菜单功能813.5 Workbench的内嵌编辑器993.5.1 内嵌编辑器操作993.5.2 编辑键说明993.6 C?SPY概述1013.6.1 C?SPY的C语言级和汇编语言级调试1013.6.2 程序的执行1023.7 C?SPY的操作1033.7.1 程序生成1033.7.2 编译与连接1033.7.3 C?SPY运行1033.7.4 C语言级调试1043.7.5 汇编级调试1113.8 C?SPY的功能汇总1133.8.1 C?SPY的窗口1133.8.2 C?SPY的菜单命令功能1203.9 C?SPY的表达式与宏1323.9.1 汇编语言表达式1323.9.2 C语言表达式1333.9.3 C?SPY宏1353.9.4 C?SPY的设置宏1373.9.5 C?SPY的系统宏137 第4章 C430程序设计实例4.1 程序设计与调试环境1434.1.1 程序设计调试集成环境1434.1.2 设备连接1444.1.3 ProF149实验系统1444.2 数值计算1454.2.1 C语言表达式1454.2.2 利用MPY实现运算1464.3 循环结构1474.4 选择结构1484.5 SFR访问1494.6 RAM访问1504.7 FLASH访问1514.8 WDT操作1534.8. 1 WDT使程序自动复位1534.8.2 程序对WATCHDOG计数溢出的控制1544.8.3 WDT的定时器功能1554.9 Timer操作1554.9.1 用Timer产生时钟信号1554.9.2 用Timer检测脉冲宽度1564.10 UART操作1574.10.1 点对点通信1574.10.2 点对多点通信1604.11 SPI操作1634.12 比较器操作1654.13 ADC12操作1674.13.1 单通道单次转换1674.13.2 序列通道多次转换1684.14 时钟模块操作1704.15 中断服务程序1714.16 省电工作模式1754.17 调用汇编语言子程序1764.17.1 程序举例1764.17.2 生成C程序调用的汇编子程序177第5章 C430的扩展特性5.1 C430的语言扩展概述1785.1.1 扩展关键字1785.1.2 #pragma编译命令1785.1.3 预定义符号1795.1.4 本征函数1795.1.5 其他扩展特性1795.2 C430的关键字扩展1795.2.1 interrupt1805.2.2 monitor1805.2.3 no_init1815.2.4 sfrb1815.2.5 sfrw1825.3 C430的 #pragma编译命令1825.3.1 bitfields=default1825.3.2 bitfields=reversed1825.3.3 codeseg1835.3.4 function=default1835.3.5 function=interrupt1845.3.6 function=monitor1845.3.7 language=default1845.3.8 language=extended1845.3.9 memory=constseg1855.3.10 memory=dataseg1855.3.11 memory=default1855.3.12 memory=no_init1865.3.13 warnings=default1865.3.14 warnings=off1865.3.15 warnings=on1865.4 C430的预定义符号1865.4.1 DATE1875.4.2 FILE1875.4.3 IAR_SYSTEMS_ICC1875.4.4 LINE1875.4.5 STDC1875.4.6 TID1875.4.7 TIME1885.4.8 VER1885.5 C430的本征函数1885.5.1 _args$1885.5.2 _argt$1895.5.3 _BIC_SR1895.5.4 _BIS_SR1905.5.5 _DINT1905.5.6 _EINT1905.5.7 _NOP1905.5.8 _OPC1905.6 C430的汇编语言接口1915.6.1 创建汇编子程序框架1915.6.2 调用规则1915.6.3 C程序调用汇编子程序1935.7 C430的段定义1935.7.1 存储器分布与段定义1945.7.2 CCSTR段1945.7.3 CDATA0段1945.7.4 CODE段1955.7.5 CONST1955.7.6 CSTACK1955.7.7 CSTR1955.7.8 ECSTR1955.7.9 IDATA01965.7.10 INTVEC1965.7.11 NO_INIT1965.7.12 UDATA0196第6章 C430的库函数6.1 引言1976.1.1 库模块文件1976.1.2 头文件1976.1.3 库定义汇总1976.2C 库函数参考2046.2.1 C库函数的说明格式2046.2.2 C库函数说明204第7章 C430编译器的诊断消息7.1 编译诊断消息的类型2307.2 编译出错消息2317.3 编译警告消息243附录 AMSP430系列FLASH型芯片资料248附录 BProF149实验系统251附录 CMSP430x14x.H文件253附录 DIAR MSP430 C语言产品介绍275

    标签: MSP 430 C语言 单片机

    上传时间: 2014-05-05

    上传用户:253189838

  • MSP430系列超低功耗16位单片机原理与应用

    MSP430系列超低功耗16位单片机原理与应用TI公司的MSP430系列微控制器是一个近期推出的单片机品种。它在超低功耗和功能集成上都有一定的特色,尤其适合应用在自动信号采集系统、液晶显示智能化仪器、电池供电便携式装置、超长时间连续工作设备等领域。《MSP430系列超低功耗16位单片机原理与应用》对这一系列产品的原理、结构及内部各功能模块作了详细的说明,并以方便工程师及程序员使用的方式提供软件和硬件资料。由于MSP430系列的各个不同型号基本上是这些功能模块的不同组合,因此,掌握《MSP430系列超低功耗16位单片机原理与应用》的内容对于MSP430系列的原理理解和应用开发都有较大的帮助。《MSP430系列超低功耗16位单片机原理与应用》的内容主要根据TI公司的《MSP430 Family Architecture Guide and Module Library》一书及其他相关技术资料编写。  《MSP430系列超低功耗16位单片机原理与应用》供高等院校自动化、计算机、电子等专业的教学参考及工程技术人员的实用参考,亦可做为应用技术的培训教材。MSP430系列超低功耗16位单片机原理与应用 目录  第1章 MSP430系列1.1 特性与功能1.2 系统关键特性1.3 MSP430系列的各种型号??第2章 结构概述2.1 CPU2.2 代码存储器?2.3 数据存储器2.4 运行控制?2.5 外围模块2.6 振荡器、倍频器和时钟发生器??第3章 系统复位、中断和工作模式?3.1 系统复位和初始化3.2 中断系统结构3.3 中断处理3.3.1 SFR中的中断控制位3.3.2 外部中断3.4 工作模式3.5 低功耗模式3.5.1 低功耗模式0和模式13.5.2 低功耗模式2和模式33.5.3 低功耗模式43.6 低功耗应用要点??第4章 存储器组织4.1 存储器中的数据4.2 片内ROM组织4.2.1 ROM表的处理4.2.2 计算分支跳转和子程序调用4.3 RAM与外围模块组织4.3.1 RAM4.3.2 外围模块--地址定位4.3.3 外围模块--SFR??第5章 16位CPU?5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG2?5.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令集概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令5.4 指令分布??第6章 硬件乘法器?6.1 硬件乘法器的操作6.2 硬件乘法器的寄存器6.3 硬件乘法器的SFR位6.4 硬件乘法器的软件限制6.4.1 硬件乘法器的软件限制--寻址模式6.4.2 硬件乘法器的软件限制--中断程序??第7章 振荡器与系统时钟发生器?7.1 晶体振荡器7.2 处理机时钟发生器7.3 系统时钟工作模式7.4 系统时钟控制寄存器7.4.1 模块寄存器7.4.2 与系统时钟发生器相关的SFR位7.5 DCO典型特性??第8章 数字I/O配置?8.1 通用端口P08.1.1 P0的控制寄存器8.1.2 P0的原理图8.1.3 P0的中断控制功能8.2 通用端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理图8.2.3 P1、P2的中断控制功能8.3 通用端口P3、P48.3.1 P3、P4的控制寄存器8.3.2 P3、P4的原理图8.4 LCD端口8.5 LCD端口--定时器/端口比较器??第9章 通用定时器/端口模块?9.1 定时器/端口模块操作9.1.1 定时器/端口计数器TPCNT1--8位操作9.1.2 定时器/端口计数器TPCNT2--8位操作9.1.3 定时器/端口计数器--16位操作9.2 定时器/端口寄存器9.3 定时器/端口SFR位9.4 定时器/端口在A/D中的应用9.4.1 R/D转换原理9.4.2 分辨率高于8位的转换??第10章 定时器?10.1 Basic Timer110.1.1 Basic Timer1寄存器10.1.2 SFR位10.1.3 Basic Timer1的操作10.1.4 Basic Timer1的操作--LCD时钟信号fLCD?10.2 8位间隔定时器/计数器10.2.1 8位定时器/计数器的操作10.2.2 8位定时器/计数器的寄存器10.2.3 与8位定时器/计数器有关的SFR位10.2.4 8位定时器/计数器在UART中的应用10.3 看门狗定时器11.1.3 比较模式11.1.4 输出单元11.2 TimerA的寄存器11.2.1 TimerA控制寄存器TACTL11.2.2 捕获/比较控制寄存器CCTL11.2.3 TimerA中断向量寄存器11.3 TimerA的应用11.3.1 TimerA增计数模式应用11.3.2 TimerA连续模式应用11.3.3 TimerA增/减计数模式应用11.3.4 TimerA软件捕获应用11.3.5 TimerA处理异步串行通信协议11.4 TimerA的特殊情况11.4.1 CCR0用做周期寄存器11.4.2 定时器寄存器的启/停11.4.3 输出单元Unit0??第12章 USART外围接口--UART模式?12.1 异步操作12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多处理机模式12.1.5 地址位格式12.2 中断与控制功能12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制与状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调制控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式--低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART模式的波特率12.4.3 节约MSP430资源的多处理机模式12.5 波特率的计算??第13章 USART外围接口--SPI模式?13.1 USART的同步操作13.1.1 SPI模式中的主模式--MM=1、SYNC=113.1.2 SPI模式中的从模式--MM=0、SYNC=113.2 中断与控制功能13.2.1 USART接收允许13.2.2 USART发送允许13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF??第14章 液晶显示驱动?14.1 LCD驱动基本原理14.2 LCD控制器/驱动器14.2.1 LCD控制器/驱动器功能14.2.2 LCD控制与模式寄存器14.2.3 LCD显示内存14.2.4 LCD操作软件例程14.3 LCD端口功能14.4 LCD与端口模式混合应用实例??第15章 A/D转换器?15.1 概述15.2 A/D转换操作15.2.1 A/D转换15.2.2 A/D中断15.2.3 A/D量程15.2.4 A/D电流源15.2.5 A/D输入端与多路切换15.2.6 A/D接地与降噪15.2.7 A/D输入与输出引脚15.3 A/D控制寄存器??第16章 其他模块16.1 晶体振荡器16.2 上电电路16.3 晶振缓冲输出??附录A 外围模块地址分配?附录B 指令集描述?B1 指令汇总B2 指令格式B3 不增加ROM开销的指令模拟B4 指令说明B5 用几条指令模拟的宏指令??附录C EPROM编程?C1 EPROM操作C2 快速编程算法C3 通过串行数据链路应用\"JTAG\"特性的EPROM模块编程C4 通过微控制器软件实现对EPROM模块编程??附录D MSP430系列单片机参数表?附录E MSP430系列单片机产品编码?附录F MSP430系列单片机封装形式?

    标签: MSP 430 超低功耗 位单片机

    上传时间: 2014-05-07

    上传用户:lwq11

  • MSP430系列flash型超低功耗16位单片机

    MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录  第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名

    标签: flash MSP 430 超低功耗

    上传时间: 2014-04-28

    上传用户:sssnaxie

  • MCS-51单片机数据存储器的扩展

    MCS-51单片机数据存储器的扩展:3 数据存储器的扩展MCS-51单片机内部有128或256个字节的数据存储器,这些存储器通常被用作工作寄存器、堆栈、临时变量等等,一般已经够用,但是如果系统要存储大量的数据,比如数据采集系统,那么片内的数据存储器就不够用了,需要进行扩展。3.1 常用的数据存储器单片机中常用的数据存储器是静态RAM存储器(SRAM),图7是几种常用的数据存储器的引脚图,以62256为例介绍,其中:A0~A14:地址输入线;D0~D7:数据线; CE:选片信号输入线,低电平有效; OE:读选通信号输入线,低电平有效; WE:写选通信号输入线,低电平有效;CE2:6264芯片的高有效选通端;VCC:工作电源,一般接+5V;GND:工作地.

    标签: MCS 51 单片机 数据存储器

    上传时间: 2013-10-28

    上传用户:jkhjkh1982