该文研究了无刷直流电机的无位置传感器控制理论、转矩波动抑制方法、数字仿真算法和DSP控制技术.首先,该文介绍了无刷直流电机无位置传感器控制原理,比较了目前几种常用的无位置传感器控制方法,提出了基于径向基函数(RBF)神经网络的无位置传感器控制方法.通过离散化位置信号的映射方程,得到网络的基本输入输出,网络的输出通过逻辑处理,处理后的结果作为电机控制信号,同时也作为网络的训练教师.采用在线学习和离线学习两种方式训练网络,并详细介绍了两种方式的算法;其次,该文概述了无刷直流电机转矩波动的产生原因,重点分析了换相转矩波动产生的原理,提出了基于误差反传(BP)神经网络的转矩波动抑制新方法.采用两个结构相同三层网络,建立了电压自校正调节器,对电机端电压进行瞬时调节,保持电路中电流幅值不变,实现了转矩波动的自适应调节.另外,该文推导了较全面的电机数学模型,重点研究了无刷直流电机仿真中的几个关键技术,包括气隙磁场的建立、位置信号的模拟、中心点电压的计算、二极管续流状态的实现以及PWM电流控制的仿真.采用面向对象程序设计(OOP)方法,设计了多功能的仿真软件SIMOT.最后该文介绍了数字信号处理器(DSP)TMS320LF2407的结构和性能,给出了PWM控制和A/D转换的算法,采用反电势法原理实现了无位置传感器控制,并给出了相关的实验结果.
标签:
ANN
无刷直流电机
无位置传感器
上传时间:
2013-07-14
上传用户:klds