LCS(最长公共子序列)问题可以简单地描述如下:
一个给定序列的子序列是在该序列中删去若干元素后得到的序列。给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X={A,B,C,B,D,B,A},Y={B,D,C,A,B,A},则序列{B,C,A}是X和Y的一个公共子序列,但它不是X和Y的一个最长公共子序列。序列{B,C,B,A}也是X和Y的一个公共子序列,它的长度为4,而且它是X和Y的一个最长公共子序列,因为X和Y没有长度大于4的公共子序列。
最长公共子序列问题就是给定两个序列X={x1,x2,...xm}和Y={y1,y2,...yn},找出X和Y的一个最长公共子序列。对于这个问题比较容易想到的算法是穷举,对X的所有子序列,检查它是否也是Y的子序列,从而确定它是否为X和Y的公共子序列,并且在检查过程中记录最长的公共子序列。X的所有子序列都检查过后即可求出X和Y的最长公共子序列。X的每个子序列相应于下标集{1,2,...,m}的一个子集。因此,共有2^m个不同子序列,从而穷举搜索法需要指数时间。
标签:
序列
LCS
元素
上传时间:
2015-06-09
上传用户:气温达上千万的