虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

图像融合

  • 基于FPGA的路径识别图像传感器的设计

    基于彩色路径识别的视觉导航方法是当前自动导航小车领域的研究热点和方向。视觉导航是指根据地面路径和被控对象之间的位置偏差控制其运行的方向,因此,地面彩色路径图像的摄取及其识别处理就成为视觉导航系统中的基础和关键。在当前的视觉导航系统设计中,图像处理的硬件平台都是基于通用微处理器,嵌入式微处理器或者DSP进行设计的。这些处理器一个共同的特点就是数据串行处理,而图像处理过程涉及大量的并行处理操作,因此传统的串行处理方式满足不了图像处理的实时性要求。 鉴于微处理器这方面的不足,作者提出一种使用FPGA实现图像识别的并行处理方案,并据此设计一个智能图像传感器。该传感器采用先进的FPGA技术,将图像采集及其显示,路径的识别处理以及通信控制等模块集成在一个芯片上,形成一个片上系统(SOC)。其主要功能是对所采集的彩色路径图像进行识别处理,获得彩色路径的坐标及其方向角,并将处理结果发送给上位机,为自动导航提供控制依据。 本文将彩色路径的识别处理过程划分为三个阶段,第一阶段为颜色聚类识别,以获得二值路径图像,第二阶段为数学形态学运算,用于对第一阶段中获得的二值图像进行去斑处理,第三阶段为路径中心线的定位及其方向角的测量。图像传感器与上位机的通信采用异步串行方式,由于上位机需要控制该传感器执行多种任务,作者定义一种基于异步串行通信的应用层协议,用于上位机对传感器的控制。在图像的显示中,为了弥补图像采集的速率和VGA显示速率的不匹配,作者提出一种基于单端口存储器的图像帧缓冲机制,通过VGA接口将采集的图像实时地显示出来。 根据上述思想,作者完成了系统的硬件电路设计,并对整个系统进行了现场调试。调试结果表明,传感器系统的各个模块都能正常工作,FPGA中的数字逻辑电路能够实时地将路径从图像中准确地识别出来,.充分体现了FPGA对路径图像的高速处理优势,达到了设计预期目标,在一定程度上丰富了路径图像识别处理的技术和方法。

    标签: FPGA 路径识别 图像传感器

    上传时间: 2013-04-24

    上传用户:ghostparker

  • 基于FPGA的全景图像处理系统设计

    随着科学技术的不断发展,视频图像处理的应用越来越广泛,各种图像处理算法日趋成熟,相关的硬件技术更是不断推陈出新。现代大规模集成电路VLSI技术的迅猛发展为视频图像处理技术提供了硬件基础。其中,现场可编程门阵列FPGA用于嵌入式视频图像处理有其独特优势。FPGA高性能、高集成度、低功耗的特点不仅使其具备高速CPU的性能,而且其可编程性使得设计者可以方便的通过对逻辑结构的修改和配置,完成对系统的升级。 本文根据FPGA的并行处理特点,以及其在实时图像处理方面的优势,进行了基于FPGA的全景图像处理系统的设计。在设计过程中,广泛查阅了相关资料,通过分析系统的功能,进行具体器件的选型,最后确定红色飓风Ⅱ代开发板及其扩展板作为本系统的硬件开发平台。然后通过编写相应的驱动程序(I2C总线控制器、SDRAM控制器),应用程序(视频数据接收与存储逻辑模块),实现系统图像采集、存储的功能。本文的所有逻辑模块均采用Verilog HDL语言进行描述设计。 本文最后对系统进行了调试。经实验验证,系统达到了图像实时采集、存储的功能,能进行正确可靠的工作。该系统为后续的图像处理打下了坚实的基础,同时整个系统的逻辑模块资源消耗只占FPGA(EP1C12)的百分之几,剩余资源还可以来用作一些硬件算法。

    标签: FPGA 全景图像 处理系统

    上传时间: 2013-07-02

    上传用户:lh25584

  • 基于FPGA的高分辨率图像采集卡

    随着计算机科学和视频技术的广泛发展,数字图像采集在电子通信与信息处理领域得到了广泛的应用,例如广播电视的数字化、网络视频、监视监控系统等. 视频图像采集卡作为计算机视频应用的前端设备,承担着模拟视频信号向数字视频信号转换的任务,在多媒体时代占据着重要的位置.设计一种功能灵活,使用方便,便于嵌入到系统中的视频信号采集电路具有重要的实用意义. 本文首先介绍数字图像采集系统的发展现状和前景,提出了本次设计的目标: 完成基于PCI总线的高分辨率图像采集卡设计.然后简单介绍了本次设计用到的基本理论:数据采集理论,特别说明了采样和量化的定义与区别,以及量化的几种方式和量化与AD技术之间的关系. 图像采集系统的基本构成,是以数字信号处理器为核心,控制外围的A/D、D/A转换器和外围存储器.本文对比了当下流行的DSP芯片和IFPGA芯片作为数字处理核心的优缺点,并根据系统实际需要,选用FPGA作为数字信号处理器.然后列举了几款常用A/D视频芯片,还介绍了SDRAM控制的基本流程,最后提出了系统的整体设计方案. 图像采集卡的硬件设计分为A/D前端模拟通道设计和FPGA数字信号传输及外围电路设计.本文重点介绍了A/D芯片外围电路连接和使用方法,对PCI总线和它的控制电路也做了详细阐述.对图像采集卡的PCB布局布线也有详细说明. 图像采集卡FPGA内部程序构成也是本文的一个重点.本次的程序设计主要分为数据采集模块,即与A/D接口模块,数据暂存模块,即SDRAM读写控制模块,数据处理模块和数据传输模块,即PCI控制模块.重点在于对的SDRAM的连续读写控制和各个模块间的协调工作.说明了.A/D采集数据从接收到存储详细过程,以及对SDRAM读写状态机和PCI总线的操控. 最后介绍了硬件调试和FPGA程序验证结果.详细说明了以Modelsim为平台的前端功能仿真和后端时序仿真,以及以SignalTapⅡ为平台,程序下载到FPGA中进行的实时验证.结果表明整个图像采集系统基本达到了系统设计中所给出的性能指标,证明了整个系统设计的正确性和合理性.

    标签: FPGA 高分辨率 图像采集卡

    上传时间: 2013-04-24

    上传用户:amandacool

  • 高速实时图像采集和处理系统的研究

    光斑质心检测系统是APT精跟踪伺服系统的关键技术之一,目前的光斑检测系统大多是基于PC机的,存在着高速实时性、稳定性问题。在总结各种检测算法的基础上,本文提出了基于FPGA的图像处理算法,实现了激光光斑中心的高速实时检测。 文中主要采用3×3窗口模块和自适应阈值模块,先对CCD输入数据进行处理,判断光斑的范围,然后再运用光斑的质心算法对光斑所占的像元进行运算,得出光斑位置的脱靶量,最后用VGA格式将图像显示在LCD上。本文达到了的3000帧/s的脱靶量帧速,精度为2urad的技术指标,实现了高速率、高精度的精跟踪要求。

    标签: 实时图像采集 处理系统

    上传时间: 2013-04-24

    上传用户:林鱼2016

  • 高速图像采集系统的研究与设计

    图像采集是数字化图像处理的第一步,开发图像采集平台是视觉系统开发的基础。视觉检测的速度是视觉检测要解决的关键技术之一,也是专用图像处理系统设计所要完成的首要目标

    标签: 高速图像采集

    上传时间: 2013-04-24

    上传用户:waitingfy

  • 基于FPGA的红外图像处理技术

    本文在深入分析红外焦平面阵列热成像系统工作原理的基础上,根据红外图像处理系统的实际应用,研究了相应的图像处理算法,为使其实时实现,本文对算法基于FPGA的高效硬件实现进行了深入研究。首先对IRFRA器件的工作原理和读出电路结构进行了分析,叙述了相应的驱动电路设计原理和相关模拟电路的处理技术。然后,以本文设计的基于FPGA高速红外图像处理硬件系统为运行平台,针对红外温差成像图像高背景、低对比度的特点和系统中主要存在的非均匀性图案噪声,研究了非均匀性校正和直方图投影增强算法的实时实现技术。还将基于FPGA的红外图像处理的实现技术,拓展到一些空域、频域及基于直方图的图像处理基本算法。其中以红外增强算法作为重点,引入了一种易于FPGA实现、基于双阈值调节、可有效改善系统成像质量的增强算法。并在FPGA硬件平台上成功地实现了该算法。最后,本系统还将处理后的图像数据转化成了全电视信号,实时地显示在监视器上。实验结果表明,本文设计的系统,能够很好地完成大容量数据流的实时处理,有效地改善了图像质量,显著提高了图像显示效果。

    标签: FPGA 红外图像 处理技术

    上传时间: 2013-07-02

    上传用户:AbuGe

  • 基于FPGA的红外图像非均匀性校正方法

    随着红外焦平面阵列的不断发展,红外技术的应用范围将越来越广泛。焦平面面阵探测器的一个最大的缺点是固有的非均匀性。本文首先介绍了红外热成像技术的发展,讨论了红外焦平面阵列的基本原理和工作方式,分析了红外非均匀性产生的原因。其次研究了几种主要的非均匀校正方法以及焦平面阵列元的盲元检测和补偿的方法,对红外图像处理技术做了研究。 本文研究的探测器是法国ULIS公司的320×240非制冷微测辐射热计焦平面阵列探测器。主要研究对其输出信号进行非均匀性校正和图像增强。最后针对这一课题编写了基于FPGA的两点校正、两点加一点校正、全局非均匀校正算法和红外图像直方图均衡化增强程序,并对三种校正方法做了比较。

    标签: FPGA 红外图像 非均匀性校正

    上传时间: 2013-08-03

    上传用户:qq442012091

  • 基于FPGA的静止图像编码器

    遥感图像在人类生活和军事领域的应用日益广泛,适合各种要求的遥感图像编码技术具有重要的现实意义。基于小波变换的内嵌编码技术已成为当前静止图像编码领域的主流,其中就包括基于分层树集合分割排序(Set Partitioning inHierarchical Trees,SPIHT)的内嵌编码算法。这种算法具有码流可随机获取以及良好的恢复图像质量等特性,因此成为实际应用中首选算法。随着对图像编码技术需求的不断增长,尤其是在军事应用领域如卫星侦察等方面,这种编码算法亟待转换为可应用的硬件编码器。 在静止图像编码领域,高性能的图像编码器设计一直是相关研究人员不懈追求的目标。本文针对静止图像编码器的设计作了深入研究,并致力于高性能的图像编码算法实现结构的研究,提出了具有创新性的降低计算量、存储量,提高压缩性能的算法实现结构,并成功应用于图像编码硬件系统中。这个方案还支持压缩比在线可调,即在不改变硬件框架的条件下可按用户要求实现16倍到2倍的压缩,以适应不同的应用需求。本文所做的工作包括了两个部分。 1.一种基于行的实时提升小波变换实现结构:该结构同时处理行变换和列变换,并且在图像边界采用对称扩展输出边界数据,使得图像小波变换时间与传统的小波变换相比提高了将近2.6倍,提高了硬件系统的实时性。该结构还合理地利用和调度内部缓冲器,不需要外部缓冲器,大大降低了硬件系统对存储器的要求。 2.一种采用左遍历的比特平面并行SPIHT编码结构:在该编码结构中,空间定位生成树采用深度优先遍历方式,比特平面同时处理极大地提高了编码速度。

    标签: FPGA 图像 编码器

    上传时间: 2013-06-17

    上传用户:abc123456.

  • 基于FPGA的视频图像检测技术

    在图像处理及检测系统中,实时性要求往往影响着系统处理速度的性能。本文在分析研究视频检测技术及方法的基础上,应用嵌入式系统设计和图像处理技术,以交通信息视频检测系统为研究背景,展开了基于FPGA视频图像检测技术的研究与应用,通过系统仿真验证了基于FPGA架构的图像并行处理和检测系统具有较高的实时处理能力,能够准确并稳定地检测出运动目标的信息。可见FPGA对提高视频检测及处理的实时性是一个较好的选择。 本文主要研究的内容有: 1.分析研究了视频图像检测技术,针对传统基于PC构架和DSP处理器的视频检测系统的弊端,并从可靠性、稳定性、实时性和开发成本等因素考虑,提出了以FPGA芯片作为中央处理器的嵌入式并行数据处理系统的设计方案。 2.应用模块化的硬件设计方法,构建了新一代嵌入式视频检测系统的硬件平台。该系统由异步FIFO模块、图像空间转换模块、SRAM帧存控制模块、图像预处理模块和图像检测模块等组成,较好地解决了图像采样存储、处理和传输的问题,并为以后系统功能的扩展奠定了良好的基础。 3.在深入研究了线性与非线性滤波几种图像处理算法,分析比较了各自的优缺点的基础上,本文提出一种适合于FPGA的快速图像中值滤波算法,并给出该算法的硬件实现结构图,应用VHDL硬件描述语言编程、实现,仿真结果表明,快速中值滤波算法的处理速度较传统算法提高了50%,更有效地降低了系统资源占用率和提高了系统运算速度,增强了检测系统的实时性能。 4.研究了基于视频的交通车流量检测算法,重点讨论背景差分法,图像二值化以及利用直方图分析方法确定二值化的阈值,并对图像进行了直方图均衡处理,提高图像检测精度。并结合嵌入式系统处理技术,在FPGA系统上研究设计了这些算法的硬件实现结构,用VHDL语言实现,并对各个模块及相应算法做出了功能仿真和性能分析。 5.系统仿真与验证是整个FPGA设计流程中最重要的步骤,针对现有仿真工具用手动设置输入波形工作量大等弊病,本文提出了一种VHDL测试基准(TestBench)方法解决系统输入源仿真问题,用TEXTIO程序包设计了MATLAB与FPGA仿真软件的接口,很好地解决了仿真测试中因测试向量庞大而难以手动输入的问题。并将系统的仿真结果数据在MATLAB上还原为图像,方便了系统测试结果的分析与调试。系统测试的结果表明,运动目标的检测基本符合要求,可以排除行走路人等移动物体(除车辆外)的噪声干扰,有效地检测出正确的目标。 本文主要研究了基于FPGA片上系统的图像处理及检测技术,针对FPGA技术的特点对某些算法提出了改进,并在MATLAB、QuartusⅡ和ModelSim软件开发平台上仿真实现,仿真结果达到预期目标。本文的研究对智能化交通监控系统的车流量检测做了有益探索,对其他场合的图像高速处理及检测也具有一定的参考价值。

    标签: FPGA 视频图像 检测技术

    上传时间: 2013-07-13

    上传用户:woshiayin

  • 基于FPGA的图像处理算法及压缩编码

    本文以“机车车辆轮对动态检测装置”为研究背景,以改进提升装置性能为目标,研究在Altera公司的FPGA(Field Programmable Gate Array)芯片Cyclone上实现图像采集控制、图像处理算法、JPEG(Joint Photographic Expert Group)压缩编码标准的基本系统。本文使用硬件描述语言Verilog,以RedLogic的RVDK开发板作为硬件平台,在开发工具OUARTUS2 6.0和MODELSIM SE 6.1B环境中完成软核的设计与仿真验证。 数据采集部分完成的功能是将由模拟摄像机拍摄到的图像信号进行数字化,然后从数据流中提取有效数据,加以适当裁剪,最后将奇偶场图像数据合并成帧,存储到存储器中。数字化及码流产生的功能由SAA7113芯片完成,由FPGA对SAA7113芯片初始化设置、控制,并对数字化后的数据进行操作。 图像处理算法部分考虑到实时性与算法复杂度等因素,从装置的图像处理流程中有选择性地实现了直方图均衡化、中值滤波与边缘检测三种图像处理算法。 压缩编码部分依据JPEG标准基本系统顺序编码模式,在FPGA上实现了DCT(Discrete Cosine Transform)变换、量化、Zig-Zag扫描、直流系数DPCM(Differential Pulse Code Modulation)编码、交流系数RLC(Run Length code)编码、霍夫曼编码等主要步骤,最后用实际的图像数据块对系统进行了验证。

    标签: FPGA 图像处理 压缩编码 算法

    上传时间: 2013-04-24

    上传用户:qazwsc