图像处理技术是信息科学中近几十年来发展最为迅速的学科之一。目前,数字图像处理技术被广泛应用于航空航体、通信、医学及工业生产领域中。图像处理系统的硬件实现一般来讲有三种方式:专用的图像处理器件主要有专用集成芯片(Application SpecificIntegrated Circuit)、数字信号处理器(Digital Signal Process)和现场可编程门阵列(FieldProgrammable GateArray)以及相关电路组成。它们可以实时高速完成各种图像处理算法。图像处理中,低层的图像预处理的数据量很大,要求处理速度快,但运算结果相对比较简单。相对于其他两种系统,基于FPGA的图像处理系统非常合适用于图像的预处理。 本文设计了一种基于FPGA的图像处理系统。它的主要功能有:对摄像头送来的视频数据进行采集,并把它数字化;实现中值滤波和边缘检测这两种图像增强算法;将数字视频信号转换为模拟信号。 图像处理系统由主处理器单元、图像编码单元和图像解码单元三部分组成。FPGA作为整个系统的核心器件,不仅要模拟出12C总线协议,完成视频解码芯片和编码芯片的初始化;还要对视频流同步信号提取,实现图像采集控制,并将图像信号存储在SRAM中;图像增强算法也是在FPGA中实现。采用PHILIPS公司的专用视频解码芯片SAA7111A将模拟视频转化数字视频;视频编码芯片SAA7121完成数字视频到模拟视频的转化。
上传时间: 2013-07-19
上传用户:标点符号
实时红外图像处理是红外成像制导的关键技术。本课题来源于兵器工业部第209研究所承担研制的红外成像制导技术背景下的红外图像信息处理机项目。 本文在总结国内外研究现状的基础上,做了大量红外图像信息处理系统硬件部分的设计工作。主要有以下几点: 1.系统方案和总体结构设计 在分析比较目前几种主流系统方案后,将红外图像处理机设计成“双FPGA+双DSP+CPCI”结构。选用ADI公司TigerSHARK系列的DSP芯片ADSP-TS201作为系统高层算法处理的核心处理器,选用Altera公司的FPGA芯片StratixⅡ EP2S60F67214作为底层算法处理和接口控制的核心,选用高速CPCI总线作为红外图像信息处理机与主机的通讯桥梁。 2.FPGA部分的设计是本课题的核心,对FPGA部分进行了设计和调试 (1)图像预处理模块:FPGA负责系统的底层预处理算法和相应控制。首先对采集来的图像数据进行中值滤波和直方图统计,然后按照链路口(Linkport)的通信协议,将预处理后的图像数据实时地从FPGA传给DSP。 (2)DSP-CPCI桥接模块:FPGA负责DSP与CPCI的接口,将DSP处理后的结果通过DSP-CPCI桥接模块传给主机。 联调实验测试表明,实时红外图像信息处理成功实现了对典型红外目标的检测、识别和跟踪,从而验证系统核心FPGA部分的设计是成功的。
上传时间: 2013-07-13
上传用户:gjzeus
随着多媒体技术发展,数字图像处理已经成为众多应用系统的核心和基础。图像处理作为一种重要的现代技术,已经广泛应用于军事指挥、大视场展览、跟踪雷达、电视会议、导航等众多领域。因而,实现高分辨率高帧率图像实时处理的技术不仅具有广泛的应用前景,而且对相关领域的发展也具有深远意义。 大视场可视化系统由于屏幕尺寸很大,只有在特制的曲面屏幕上才能使细节得到充分地展现。为了在曲面屏幕上正确的显示图像,需要在投影前实时地对图像进行几何校正和边缘融合。而现场可编程门阵列(FPGA)则是用硬件处理实时图像数据的理想选择,基于FPGA的图像处理技术是世界范围内广泛关注的研究领域。 本课题的主要工作就是设计一个以FPGA为核心的硬件系统,该系统可对高分辨率高刷新率(1024*768@60Hz)的视频图像实时地进行几何校正和边缘融合。 论文首先介绍了图像处理的几何原理,然后提出了基于FPGA的大视场实时图像融合处理系统的设计方案和模块功能划分。系统分为算法与软件设计,硬件电路设计和FPGA逻辑设计三个大的部分。本论文主要负责FPGA的逻辑设计。围绕FPGA的逻辑设计,论文先介绍了系统涉及的关键技术,以及使用Verilog语言进行逻辑设计的基本原则。 论文重点对FPGA内部模块设计进行了详细的阐述。仲裁与控制模块是顶模块的主体部分,主要实现系统状态机和时序控制;参数表模块主要实现SDRAM存储器的控制器接口,用于图像处理时读取参数信息。图像处理模块是整个系统的核心,通过调用FPGA内嵌的XtremeDSP模块,高速地完成对图像数据的乘累加运算。最后论文提出并实现了一种基于PicoBlaze核的12C总线接口用于配置FPGA外围芯片。 经过对寄存器传输级VerilogHDL代码的综合和仿真,结果表明,本文所设计的系统可以应用在大视场可视化系统中完成对高分辨率高帧率图像的实时处理。
上传时间: 2013-05-19
上传用户:恋天使569
随着电子技术和计算机技术的飞速发展,视频图像处理技术近年来得到极大的重视和长足的发展,其应用范围主要包括数字广播、消费类电子、视频监控、医学成像及文档影像处理等领域。当前视频图像处理主要问题是当处理的数据量很大时,处理速度慢,执行效率低。而且视频算法的软件和硬件仿真和验证的灵活性低。 本论文首先根据视频信号的处理过程和典型视频图像处理系统的构成提出了基于FPGA的视频图像处理系统总体框图;其次选择视频转换芯片SAA7113,完成视频图像采集模块的设计,主要分三步完成:1)配置视频转换芯片的工作模式,完成视频转化芯片SAA7113的初始化:2)通过分析输出数据流的格式标准,来识别奇偶场信号、场消隐信号和有效行数据的开始和结束信号三种控制信号,并根据控制信号,用Verilog硬件描述语言编程实现图像数据的采集;3)分析SRAM的读写控制时序,采用两块SRAM完成图像数据的存储。然后编写软件测试文件,在ISE Simulator仿真环境进行程序测试与运行,并分析仿真结果,验证了数据采集和存储的正确性;最后,对常用视频图像算法的MATLAB仿真,选择适当的算子,采用工具MATLAB、System Generator for DSP和ISE,利用模块构建方式,搭建视频算法平台,实现图像平滑滤波、锐化滤波算法,在Simulink中仿真并自动生成硬件描述语言和网表,对资源的消耗做简要分析。 本论文的创新点是采用新的开发环境System Generator for DSP实现视频图像算法。这种开发视频图像算法的方式灵活性强、设计周期短、验证方便、是视频图像处理发展的必然趋势。
上传时间: 2013-07-28
上传用户:lingzhichao
视频监控一直是人们关注的应用技术热点之一,它以其直观、方便、信息内容丰富而被广泛用于在电视台、银行、商场等场合。在视频图像监控系统中,经常需要对多路视频信号进行实时监控,如果每一路视频信号都占用一个监视器屏幕,则会大大增加系统成本。视频图像画面分割器主要功能是完成多路视频信号合成一路在监视器显示,是视频监控系统的核心部分。 传统的基于分立数字逻辑电路甚至DSP芯片设计的画面分割器的体积较大且成本较高。为此,本文介绍了一种基于FPGA技术的视频图像画面分割器的设计与实现。 本文对视频图像画面分割技术进行了分析,完成了基于ITU-RBT.656视频数据格式的画面分割方法设计;系统采用Xilinx公司的FPGA作为核心控制器,设计了视频图像画面分割器的硬件电路,该电路在FPGA中,将数字电路集成在一起,电路结构简洁,具有较好的稳定性和灵活性;在硬件电路平台基础上,以四路视频图像分割为例,完成了I2C总线接口模块,异步FIFO模块,有效视频图像数据提取模块,图像存储控制模块和图像合成模块的设计,首先,由摄像头采集四路模拟视频信号,经视频解码芯片转换为数字视频图像信号后送入异步FIFO缓冲。然后,根据画面分割需要进行视频图像数据抽取,并将抽取的视频图像数据按照一定的规则存储到图像存储器。最后,按照数字视频图像的数据格式,将四路视频图像合成一路编码输出,实现了四路视频图像分割的功能。从而验证了电路设计和分割方法的正确性。 本文通过由FPGA实现多路视频图像的采集、存储和合成等逻辑控制功能,I2C总线对两片视频解码器进行动态配置等方法,实现四路视频图像的轮流采集、存储和图像的合成,提高了系统集成度,并可根据系统需要修改设计和进一步扩展功能,同时提高了系统的灵活性。
上传时间: 2013-04-24
上传用户:啦啦啦啦啦啦啦
随着科学技术的发展,指纹识别技术被广泛应用到各种不同的领域。对于一般的指纹识别系统,其设计要求具有很高的实时性和易用性,因此识别算法应该具有较低的复杂度,较快的运算速度,从而满足实时性的要求。所以有必要根据不同的识别算法采用不同的实现平台,使得指纹识别系统具有较高的可靠性、实时性、有效性等性能要求。 SOPC片上可编程系统和嵌入式系统是当前电子设计领域中最热门的概念。NiosⅡ是Altera.公司开发的一种采用流水线技术、单指令流的RISC嵌入式处理器软核,可以将它嵌入到FPGA内部,与用户自定义逻辑组建成一个基于FPGA的片上专用系统。 本文在综合考虑各种应用情况的基础上,以网络技术、数据库技术、指纹识别技术和嵌入式系统技术为理论基础,提出了一种有效可行的系统架构方案。对指纹识别技术中各个环节的算法和原理进行了深入研究,合理的改进了部分指纹识别算法;同时为了提高系统的实时性,采用NiosⅡ嵌入式处理器和FPGA硬件模块实现指纹图像处理主要算法。论文主要包括以下几个方面: 1、对指纹图像预处理、特征提取和特征匹配算法原理进行阐述,同时改进了指纹图像的细化算法,提高了算法的性能,并设计了一套实用的指纹特征数据结构; 2、针对指纹图像预处理模块,包括图像的归一化、频率提取、方向提取以及方向滤波,采用基于FPGA的硬件电路的方式实现。实验结果表明,在保证系统误识率较低、可靠性高的基础上,大大提高了系统的执行速度; 3、改变了传统的单枚指纹识别方法,提出采用多枚指纹唯一标识身份,大大降低了识别系统的误识率; 4、改进了传统的基于三角形匹配中获取基准点的方法,同时结合可变界限盒思想进行指纹特征匹配。 5、结合COM+技术、数据库技术和网络技术,开发了后台指纹特征匹配服务系统,实现了嵌入式指纹识别系统同数据库的实时信息交换。 实验结果表明,本文所提出的系统构架方案有效可行,基于FPGA的自动指纹识别系统在速度、功耗、扩展性等方面具有独特的优势,拥有广阔的发展前景。
上传时间: 2013-04-24
上传用户:15528028198
纹理映射在计算机图形计算中属于光栅化阶段,处理的是像素,主要的特点是数据的吞吐量大,对实时系统来说转换的速度是一个关键的因素,人们寻求各种加速算法来提高运算速度。传统的方法是用更快的处理器,并行算法或专用硬件。随着数字技术的发展,尤其是可编程逻辑门阵列(FPGAs)的发展,提供了一种新的加速方法。FPGAs在密度和性能上都有突破性的发展,当前的FPGA芯片已经能够运算各种图形算法,而在速度上与专用的图形卡硬件相同。因此,FPGA芯片非常适合这项工作。 本文主要工作包括以下几个方面: 1、本文提出了一种MIPmapping纹理映射优化方法,改进了MIPmapping映射细化层次算法及纹理图像的存储方式,减少纹理寻址的计算量,提高纹理存储的相关性。详细内容请阅读第三章。 2、提出了一种MIPmapping纹理映射优化方法的硬件实现方案,该方案针对移动设备对功耗和面积的要求,以及分辨率不高的特点,在参数空间到纹理地址的计算中用定点数来实现。详细内容请阅读第四章。 3、实现了纹理映射流水线单元纹理地址产生电路,及纹理滤波电路的FPGA设计,并给出设计的综合和仿真结果。详细内容请阅读第五章4、实现了符合IEEE 754单精度标准的乘法、乘累加及除法运算器电路。乘法器采用改进型Booth编码电路以减少部分积数量,用Wallace对部分积进行压缩;乘累加器采用multiply-add fused算法,对关键路径进行了优化;除法器为基于改进型泰勒级数展开的查找表结构实现,查找表尺寸只有208字节,电路为固定时延,在电路尺寸、延时及复杂度方面进行了较好的平衡。
上传时间: 2013-04-24
上传用户:yxvideo
视频图像处理的应用越来越广泛,各种处理算法也日趋成熟,相关的硬件技术不断地推陈出新。视频图像处理系统的硬件实现一般来说有三种方式:数字信号处理器(Digital Signal Processor)、专用集成芯片(Application Specific Integrated Circuit)和现场可编程逻辑门阵列(Field Programmable Gate Array)以及相关电路组成。最近几年,随着电子设计自动化(Electronic Design Automation)技术的迅速发展,使得基于FPGA的可编程片上系统(System On a Programmable Chip)逐渐成为嵌入式系统。应用的一种趋势。特别地,在视频图像处理系统设计中,数据量大,要求处理速度快,灵活性高,FPGA有其独特的优势。鉴于此,本文对基于FPGA和SOPC技术的视频图像处理系统进行了研究。 本文介绍了Xilinx公司FPGA的结构和功能特点,以及可编程片上系统的开发工具和片内系统设计流程。根据视频信号的相关知识,编写了视频图像处理IP核,构建了视频图像处理系统。整个系统以FPGA为核心器件,内嵌PowerPC405处理器模块,通过ⅡC总线完成视频解码芯片的初始化,总体上实现了对视频图像信号的采集、处理、存储和显示。 本文最后对系统进行了调试。经过实验验证,系统能正确和可靠地工作。整个系统的逻辑资源消耗占FPGA的百分之十几,剩余的资源可以做许多硬件算法或其它方面的应用。
上传时间: 2013-05-24
上传用户:kaka
新型的电子内窥镜融合了电子、光学以及图像处理等技术,以其方便优良的图像采集、处理及显示能力在工业无损检测、现代医疗等方面得到了广泛的应用。如何进一步提高电子内窥镜的图像采集及处理速度、智能化控制水平、便携性...
上传时间: 2013-07-26
上传用户:ynzfm
本文研究的视频处理系统是上海市科委技术攻关基金项目“计算机视觉及其芯片化实现”的一部分,主要完成计算机视觉系统的一些基本工作,即视频图像的采集、预处理和显示等。 视频图像采集和预处理系统以Xilinx公司Virtex-ⅡPro系列的FPGA为核心控制器件,结合视频模数转换芯片和VGA显示器,完成视频图像的实时采集、预处理和显示。采集和显示部分作为同外界交流信息的渠道,是构成计算机视觉系统必不可少的一部分;图像预处理则是计算机视觉系统进行高层处理的基础,优秀的预处理算法能有效改善图像质量,提高系统分析判断的准确性。 本文在介绍基于FPGA的视频采集、预处理系统整体架构的基础上,围绕以下四个方面展开了工作: 1.研究并给出了两种基于FPGA的设计方案用于实现YCrCb色度空间到RGB色度空间的转换; 2.针对采集的视频图像,根据VGA显示的要求,给出了一种实现图像去隔行的方案; 3.分析了一系列图像滤波的预处理算法,如均值滤波、中值滤波和自适应滤波等,在比较和总结各算法特点的基础上,提出了一种新的适用于处理混合噪声的滤波算法:混合自适应滤波法; 4.根据算法特点设计了多种采用FPGA实现的图像滤波算法,并对硬件算法进行RTL级的功能仿真和验证,还给出了各种滤波算法的实验结果,在此基础上对各种算法的效果进行直观的比较。 文中,预处理算法的实现充分利用了FPGA的片内资源,体现了FPGA在图像处理方面的特点及优势。同时,视频采集和显示的控制模块也由同一FPGA芯片实现,从而简化了系统整体结构。视频采集和预处理系统在FPGA上的成功实现为“计算机视觉及其芯片化实现”奠定了必要的基础、提供了一定理论依据。
上传时间: 2013-04-24
上传用户:我好难过