基于MATLAB匹配雷达图像与光学图像(文献),内容不多,但是比较容易理解
上传时间: 2017-08-16
上传用户:225588
文章在分析了多分辨率塔形结构算法和基于遗传算法的图像匹配方法的基础上,有机地结合了这两种方法的优点提出了一种新的快速匹配算法,并与传统的基于遗传算法的图像匹配方法做了比较,试验表明算法大幅度降低了匹配时间。
上传时间: 2014-01-17
上传用户:ayfeixiao
讲述近年来图像匹配算法的文章,属于综述性质的。
上传时间: 2014-01-25
上传用户:youke111
用于图像识别的新型神经元网络 提出了一种用于图像识别的映封正交神经元网络。 在一般情况下待识别的样本空间的维数相当大, 为了有效地进行识别,必须把样本空间的维数降下来。目前常用的方法就是特征提取法,本文采用映射正交过程把样本空间映射成正交分类空间,并在此基础上,采用网络进行图像分类。计算机上模拟结果表明此网络县有时缺损和噪声图像进行正确识别的能力
上传时间: 2013-11-29
上传用户:思琦琦
一种新的图像匹配算法的研究,我的毕业论文,希望对大家有用
上传时间: 2014-11-26
上传用户:kernaling
很好的图像匹配程序代码,讲得很详细啊,很实用!
上传时间: 2017-09-14
上传用户:lmeeworm
利用小波和ICA结合方式对图像进行特征提取和识别。
标签: ICA feature identification
上传时间: 2016-03-29
上传用户:2084592
基于多尺度光照不变人脸特征图像的提取方法。
上传时间: 2016-06-06
上传用户:asd940808
基于深度卷积特征的细粒度图像分类研究综述
上传时间: 2018-11-25
上传用户:huangxiaomi
OpencV是用来实现计算机视觉相关技术的开放源码工作库,是计算机视觉、图像处理、模式识别、计算机图形学、信号处理、视频监控、科学可视化等相关从业人员的好工具。本书介绍了大约200多个典型的技术问题,覆盖了基于OpenCV基础编程的主要内容,利用大量生动有趣的编程案例和编程技巧,从解决问题和答疑解惑入手,以因特网上最新资料为蓝本,深入浅出地说明了OpenCV中最典型和用途最广的程序设计方法。全书结构清晰、合理,范例实用、丰富,理论结合实践,即使读者只是略懂计算机视觉原理,也能人手对相关理论方法直接进行编码实现。 "基于OPENCV的计算机视觉技术实现"的图书目录…… 前言 第一章 使用OpenCV实现计算机视觉技术 1.1 计算机视觉技术 1.2 什么是OpenCV 1.3 基于OpenCV库的编程方法 本章小结 第二章 OpenCV的编程环境 2.1 OpenCV环境介绍 2.2 OpenCV的体系结构 2.3 OpenCV实例演示 本章小结 第三章 OpenCV编程风格 3.1 命名约定 3.2 结构 3.3 函数接口设计 3.4 函数实现 3.5 代码布局 3.6 移植性 3.7 文件操作 3.8 文档编写 本章小结 第四章 数据结构 4.1 基本数据结构 4.2 数组有关的操作 4.3 动态结构 本章小结 第五章 数据交互 5.1 绘图函数 5.2 文件存储 5.3 运行时类型信息和通用函数 5.4 错误处理函数 5.5 系统函数 本章小结 第六章 图像处理 6.1 边缘检测 6.2 直方图 6.3 Hough变换 6.4 几何变换 6.5 形态学 本章小结 第七章 结构与识别 7.1 轮廓处理函数 7.2 计算几何 7.3 平面划分 7.4 目标检测函数 7.5 生成与控制贝塞尔曲线 7.6 用OpenCV进行人脸检测 本章小结 第八章 图形界面(HighGUI) 8.1 读取和保存图像 8.2 OpenCV中的实用系统函数 本章小结 第九章 视频处理(CvCAM) 9.1 使用HighGUI对视频进行读写处理 9.2 CvCam对摄像头和视频流的使用 本章小结 第十章 OpenCV附加库第一部分 10.1 附加库介绍 10.2 形态学(morhing functions) 本章小结 第十一章 OpenCV附加库第二部分——隐马尔可夫模型 11.1 隐马尔可夫模型概述 11.2 隐马尔可夫模型中的基本结构与函数介绍 11.3 隐马尔可夫模型中的函数介绍 11.4 人脸识别工具 本章小结 第十二章 核心库综合例程 12.1 检测黑白格标定板内指定矩形区域内的角点 12.2 解线性标定方程组程序 本章小结 第十三章 运动与跟踪 13.1 图像统计的累积函数 13.2 运动模板函数 13.3 对象跟踪 13.4 光流 13.5 预估器 13.6 Kalman滤波器跟踪示例 13.7 用Snake方法检测可变形体的轮廓 13.8 运动目标跟踪与检测 本章小结 第十四章 立体视觉第一部分——照相机定标 14.1 坐标系介绍 14.2 透视投影矩阵的获得 14.3 摄像机参数的获取 14.4 径向畸变的校正 14.5 使用OpenCV及CVUT进行摄像机定标 14.6 OpenCV中的定标函数 14.7 CVUT介绍 本章小结 第十五章 立体视觉第二部分——三维重建 15.1 极线几何 15.2 特征点匹配 15.3 三维重建 15.4 OpenCV中相关函数介绍 本章小结 第十六章 立体视觉第三部分——三维重建算法 16.1 图像校正 16.2 已校正图像的快速三维重建 16.3 Birchfield算法 16.4 OpenCV中相关函数介绍 本章小结 第十七章 立体视觉第四部分——立体视觉实例 17.1 图像校正实例代码 17.2 基于窗口的稀疏点匹配及三维重建之一 17.3 基于窗口的稀疏点匹配及三维重建之二 17.4 Birchfield算法的OpenCV实现 本章小结 第十八章 常见问题解疑 18.1 安装与编译出错解决方法 18.2 OpenCV库基本技术问题 18.3 OpenCV在Linux下的相关问题 18.4 OpenCV库中的陷阱和bug
上传时间: 2013-07-18
上传用户:huyiming139