1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左边缘直接赋值,不会影响整体效果。 5.用自定义模板进行中值滤波 区域灰度基本被赋值为0。考虑到文字是由许多短竖线组成,而背景噪声有一大部分是孤立噪声,用模板(1,1,1,1,1)T对G进行中值滤波,能够得到除掉了大部分干扰的图像C。 6.牌照搜索:利用水平投影法检测车牌水平位置,利用垂直投影法检测车牌垂直位置。 7.区域裁剪,截取车牌图像。
上传时间: 2014-01-08
上传用户:songrui
几种图像处理源码 程序代码说明 P0301:数字图像矩阵数据的显示及其傅立叶变换 P0302:二维离散余弦变换的图像压缩 P0303:采用灰度变换的方法增强图像的对比度 P0304:直方图均匀化 P0305:模拟图像受高斯白噪声和椒盐噪声的影响 P0306:采用二维中值滤波函数medfilt2对受椒盐噪声干扰的图像滤波 P0307:采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 P0308:图像的自适应魏纳滤波 P0309:运用5种不同的梯度增强法进行图像锐化 P0310:图像的高通滤波和掩模处理 P0311:利用巴特沃斯(Butterworth)低通滤波器对受噪声干扰的图像进行平滑处理 P0312:利用巴特沃斯(Butterworth)高通滤波器对图像进行锐化处理
上传时间: 2013-11-25
上传用户:jkhjkh1982
:介绍了一种基于红外光源的人眼快速定位与跟踪方法,应用于驾驶防瞌睡系统。 特殊设计的硬件用来控制红外光源,实时获取图像。采用差分图像进行人眼瞳孔图像捕捉 和提取,用卡尔曼滤波器跟踪人眼活动,以实时监测眼睛开闭状态。该方法具有快速、对驾 驶员无干扰及有较高的准确性等优点。 关键词:疲劳驾驶 红外光源 人眼
上传时间: 2016-08-05
上传用户:气温达上千万的
本文对火灾预警中DSP图像处理技术进行了研究。主要内容包括: 1.克服了常规传感器报警的缺点。采用图像型火灾报警系统利用火灾初期的火焰面积逐渐增大、火焰边缘抖动等特征作为火灾判据,消除了周围环境干扰的影响。 2.采用了具有高速度、高精度运算能力的DSP芯片,满足了图像处理中运算量大、实时性强、数据传输速率高等要求。具有功耗低、实时性强的优点。 3.采用基于模糊逻辑的图像识别技术,使系统通过模糊智能算法,把两个火灾判据—“面积增量”和“尖角变化量”有效的结合起来,进行判断。进一步提高了火灾探测的准确性,降低了误报率。
上传时间: 2014-01-22
上传用户:moerwang
针对基于图像特征点的配准方法中对应特征对难以准确提取的问题,提出一种基于兴趣 点匹配的图像自动拼接方法。该方法首先利用Harris角检测器提取两幅图像中的兴趣点,并在此基 础上采用比较最大值法提取出对应兴趣点特征对,最后利用这些匹配特征对来实现图像的拼接。实 验结果表明,这种方法能有效地去除伪匹配特征对的干扰,同时降低了误匹配的概率
上传时间: 2013-12-31
上传用户:BIBI
目的:运用强化学习!多分类器集成!降维方法等最新计算机技术,结合细胞病理知识,设计制作/智能化肺癌细胞病理图像诊断系统0"方法:采集细胞图像,运用基于强化学习的图像分割法将细胞区域从背景中分离出来 运用基于样条和改进2方法对重叠细胞进行分离和重构 提取40个细胞特征用于贝叶斯!支持向量机!紧邻和决策树4种分类器,集成产生肺癌细胞分类结果 建立肺癌细胞病理图库,运用基于等降维方法对细胞进行比对,给予未定型癌细胞分类"结果:/智能化肺癌细胞病理诊断系统0应用于临床随机1200例肺部病灶穿刺细胞学涂片,肺癌识别诊断率94180 ,假阳性率1185 ,假阴性率3135 ,肺癌分类识别率82190 ,核异型细胞识别率74120 "结论:/智能化肺癌早期细胞病理诊断系统0对肺癌细胞涂片诊断率高,克服了肺癌细胞病理诊断过程中取检细胞数量少,重叠细胞识别率低,涂片背景及染色差异等干扰因素,可辅助临床肺部病灶的穿刺细胞病理诊断"
上传时间: 2013-12-16
上传用户:chfanjiang
P0301:数字图像矩阵数据的显示及其傅立叶变换 P0302:二维离散余弦变换的图像压缩 P0303:采用灰度变换的方法增强图像的对比度 P0304:直方图均匀化 P0305:模拟图像受高斯白噪声和椒盐噪声的影响 P0306:采用二维中值滤波函数medfilt2对受椒盐噪声干扰的图像滤波 P0307:采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 P0308:图像的自适应魏纳滤波 P0309:运用5种不同的梯度增强法进行图像锐化 P0310:图像的高通滤波和掩模处理 P0311:利用巴特沃斯(Butterworth)低通滤波器对受噪声干扰的图像进行平滑处理 P0312:利用巴特沃斯(Butterworth)高通滤波器对图像进行锐化处理
上传时间: 2017-07-12
上传用户:ikemada
人口老龄化是世界各国正在面对的一个普遍问题。随着我国老龄化程度的持续加剧,对于老年人群体的医疗资源投入会不断提高。而与此同时,跌倒已经成为老年人日常生活中最为常见的危险行为活动。所以,跌倒检测系统的研究和应用对降低老年人受到的身心伤害和医疗成本具有显著的意义。目前解决老年人跌倒检测的方案仍存在许多不足。其中,基于计算机视觉的跌倒检测技术在无干扰的场景下检测较为有效,但其易受环境变化(如背景光线影响、人遮挡问题等)影响。此外,基于可穿戴计算的跌倒检测技术受限于算法稳定性和识别准确率,系统的灵敏度和特异性难以同时得到保证。针对上述问题本文提出一种融合计算机视觉和可穿戴计算数据的跌倒检测新的方法。首先,设计并开发了集成三轴加速度计、三轴陀螺仪和蓝牙的活动感知模块,实现实时采集、传输人体活动数据:其次,使用深度学习算法从摄像头采集的图像数据提取人体姿态特征数据:最后,对采集的人体活动数据和姿态数据进行规范化和时序化处理,设计了两个深度学习网络分别对数据进行特征提取,并将两特征进行特征层数据融合,在此基础上构建神经网络对融合数据进行活动本文搭建了实验平台并进行了算法测试,其中,本文跌倒检测算法针对离线测试数据的准确率为992%,平均敏感度为995%、平均特异性为99.8%:针对在线数据系统测试准确率为98.9%、平均敏感度为99.2%、平均特异性为99.5%实验结果证明了利用计算机视觉和可穿戴计算数据融合的跌倒检测具有较高的准确率和鲁棒性。
上传时间: 2022-03-14
上传用户:bluedrops
视频图像格式转换芯片的算法研究
上传时间: 2013-05-25
上传用户:eeworm
数字图像处理课程 北大计算所 PPT版
上传时间: 2013-07-16
上传用户:eeworm