本文以星载图像数据的压缩与加密为背景,对CCSDS图像压缩算法和AES数据加密算法做了深入研究。文章的主要工作包括: (1)实现了CCSDS图像压缩算法的C程序,并且与SPIHT算法和JPEG2000算法在星载图像压缩领域做了简单的对比; (2)对原始CCSDS图像压缩算法进行了改进。实验结果表明,改进后的算法在提升算法性能的同时,降低了算法的复杂度; (3)研究了AES数据加密标准,并实现了该算法的C程序; (4)用VerilogHDL语言实现了CCSDS图像压缩算法和AES数据加密算法的编码器; (5)在FPGA硬件平台上,验证了这两种算法编码器的正确性和有效性。
上传时间: 2013-04-24
上传用户:pwcsoft
本文着重于图像压缩传输技术的研究和硬件平台的的制作。首先对视频压缩技术的背景及主要压缩标准及其目前图像处理ASIC芯片市场作一个简单的回顾和分析,然后对目前比较流行的图像压缩和传输硬件平台方案作一些分析和比较,选择了一种DSP+ARM架构的图像处理及传输模式,设计拟采用JPEG静态图像压缩标准对单幅画面实现压缩,并通过DSP的HPI口把压缩后的图片传输至ARM处理器,通过ARM去实现图像的存储传输。 在硬件平台的具体实现上,以TI的TMS320VC5402实现单幅静态图像的压缩,ALTER公司的EPMT064S实现VC5402扩展存储器的逻辑控制,通过VC5402的HPI接口实现与具有ARM920T内核的S3C2410通信。在硬件平台的制作上,选择了国际流行的0rCAD+PowerPCB作为其原理图和PCB板的制作工具。在软件开发平台上,选择了以LINUX作为系统操作平台。成本低、系统灵活、能基本满足静态图像压缩传输嵌入式开发平台。 实验初步结果表明该系统架构设计可行,为以后图像压缩传输技术的进一步研究打下了良好的基础。
上传时间: 2013-07-14
上传用户:hongmo
该文探讨了以FPGA(Field Programmable Gates Array)为平台,使用HDL(Hardware Description Language)语言设计并实现符合JPEG静态图象压缩算法基本模式标准的图象压缩芯片.在简要介绍JPEG基本模式标准和FPGA设计流程的基础上,针对JPEG基本模式硬件编码器传统结构的缺点,提出了一种新的改进结构.JPEG基本模式硬件编码器改进结构的设计思想、设计结构和Verilog设计实现在其后章节中进行了详细阐述,并分别给出了改进结构中各个模块的单独测试结果.在该文的测试部分,阐述利用实际图像作为输入,从FPGA的输出得到了正确的压缩图像,计算了相应的图像压缩速度和图象质量指标,并与软件压缩的速度和结果做了对比,提出了未来的改进建议.
上传时间: 2013-04-24
上传用户:Andy123456
结合视频压缩的理论以及IP核设计中对于仿真验证的要求,本文设计了视频压缩IP核FPGA仿真验证平台.其硬件子平台以Xilinx公司XC2V3000为核心,针对视频压缩IP核应用仿真要求设计外围电路,构建一个视频压缩IP核的硬件仿真原型,采用运行于上位机上的控制和驱动软件作为软件解码子平台.同时还设计了完全独立于硬件之外的ModelSim软件仿真验证平台.以FPGA仿真验证平台为载体,本文设计了基于H.263协议的视频压缩IP核.经过ModelSim下的软件平台仿真调试与硬件平台调试相结合的手段,作者完成了视频压缩IP核的仿真验证.
上传时间: 2013-05-31
上传用户:ikemada
数字图像的压缩是解决图像数据量大、存储和传输困难的基本措施。图像压缩的方法很多,一般可分为有损压缩和无损压缩两大类。有损压缩允许一定程度的信息丢失,在满足实际应用的条件下能够取得较高的压缩比;无损压缩不允许信息丢失,但是压缩比难以提高。在医学图像、遥感图像等应用领域,对于图像的压缩比和失真度都有着较高要求,因此需要采用近无损压缩的方法。近无损压缩是有损压缩和无损压缩的一个折衷,允许一定的失真,能够获得高保真还原图像的同时,得到比无损压缩更高的压缩比。 JPEG-LS是连续色调静止图像无损和近无损压缩的国际标准,算法复杂度低,压缩性能优越,但是JPEG-LS对不同图像压缩时压缩比不可控制。本文在研究JPEG-LS近无损图像压缩算法的基础上,针对具体应用背景,提出了一种基于块的近无损压缩方法。进一步利用图像局部纹理特性分析,对不同特性的区域容忍不同的信息丢失程度,实现了对图像压缩的码率控制。针对某工程应用中的具体要求,我们以FPGA为平台,采用Verilog HDL语言对改进算法进行了硬件实现。 实验结果证明,这种基于块的具有码率控制的近无损图像压缩算法,在实现较为精确的码率控制的同时,能够获得较高的还原图像质量,而且硬件实现复杂度低,能够满足对图像的实时压缩要求。
上传时间: 2013-06-18
上传用户:zzbbqq99n
本文对基于FPGA的CCSDS图像压缩和AES加密算法的实现进行了研究。主要完成的工作有: (1)深入研究CCSDS图像压缩算法,并根据其编码方案,设计并实现了相应的编解码器。从算法性能和硬件实现复杂度两个方面,将该算法与具有类似算法结构的JPEG2000和SPIHT图像压缩算法作比较分析; (2)利用硬件描述语言VerilogHDL实现CCSDS图像压缩算法和AES加密算法; (3)优化算法复杂度较大的功能模块,如小波变换模块等。使用双端口内存模块增加数据读写速度,利用DSP块处理核心运算单元,从而很大程度上提高了模块的运行速度,并降低了芯片的使用面积; (4)设计并实现系统的模块级流水线,在几乎不增加占用芯片面积的情况下,提高了系统的数据吞吐量; (5)在QuartusⅡ和ModelSim仿真环境下对该系统进行模块级和系统级的功能仿真、时序仿真和验证。在硬件系统测试阶段,设计并实现FPGA与PC机的串口通信模块,提高了系统验证的工作效率。
上传时间: 2013-05-19
上传用户:1757122702
对弓网故障的检测在列车提速的今天显得尤其重要,原始故障图像数据量的巨大使实时存储和传输故障图像极其困难。JPEG作为一种低复杂度、高压缩比的图像压缩标准在多媒体、网络传输等领域得到广泛的应用。和相同图像质量的其它常用文件格式(如GIF,TIFF,PCX)相比,JPEG是目前静态图像中压缩比最高的。 FPGA以其设计灵活、高速的卓越特性,逐渐成为许多应用中首先器件,尤其是与Verilog和VHDL等语言的结合,大大变革了电子系统的设计方法,加速了系统的设计进程。 本文旨在研究并实现一种实时采集并对特定帧进行压缩传输的方法。通过采用可编程逻辑器件FPGA来实现整个采集、显示、压缩和传输,使系统具有可定制、高速度等优点。 本文首先介绍了开发硬件可编程逻辑门阵列FPGA及其开发语言Veridlog,并介绍了FPGA的设计方法及开发流程;接着介绍了PAL制视频采集的相关知识及设计,其中主要包括基于I2C总线的模拟视频解码控制、视频的数字化ITU-R BT.601标准介绍及视频同步信号的获取、基于SDRAM的视频帧存储、VGA显示控制设计;随后介绍了JPEG标准,并根据故障检测的特点,设计了针对灰度图像压缩的JPEG编码器,设计中先分别对组成JPEG编码器的二维DCT变换模块、量化模块、Z字扫描模块、变换直流系数的差分脉冲编码模块、交流系数的游程编码模块、哈夫曼编码模块及打包模块进行了仿真测试,然后再对整个JPEG编码器进行了测试;最后设计了单帧视频的SRAM缓存,并将缓存的源图像采用本文设计的JPEG编码器进行压缩,再设计一个仅包含发送功能的UART 将压缩后的码流传输到PC机,在PC机上通过将接收的码流以ASCⅡ码的形式还原为采集图片。 本文实现了整个采集压缩系统,同时也进一步验证了本文设计的灰度图像JPEG编码器的正确性。相信本文无论是对弓网故障的图像检测,还是对于JPEG编码器的芯片设计都有一定的参考价值。
上传时间: 2013-04-24
上传用户:cuiqiang
本文以“机车车辆轮对动态检测装置”为研究背景,以改进提升装置性能为目标,研究在Altera公司的FPGA(Field Programmable Gate Array)芯片Cyclone上实现图像采集控制、图像处理算法、JPEG(Joint Photographic Expert Group)压缩编码标准的基本系统。本文使用硬件描述语言Verilog,以RedLogic的RVDK开发板作为硬件平台,在开发工具OUARTUS2 6.0和MODELSIM SE 6.1B环境中完成软核的设计与仿真验证。 数据采集部分完成的功能是将由模拟摄像机拍摄到的图像信号进行数字化,然后从数据流中提取有效数据,加以适当裁剪,最后将奇偶场图像数据合并成帧,存储到存储器中。数字化及码流产生的功能由SAA7113芯片完成,由FPGA对SAA7113芯片初始化设置、控制,并对数字化后的数据进行操作。 图像处理算法部分考虑到实时性与算法复杂度等因素,从装置的图像处理流程中有选择性地实现了直方图均衡化、中值滤波与边缘检测三种图像处理算法。 压缩编码部分依据JPEG标准基本系统顺序编码模式,在FPGA上实现了DCT(Discrete Cosine Transform)变换、量化、Zig-Zag扫描、直流系数DPCM(Differential Pulse Code Modulation)编码、交流系数RLC(Run Length code)编码、霍夫曼编码等主要步骤,最后用实际的图像数据块对系统进行了验证。
上传时间: 2013-04-24
上传用户:qazwsc
目前的国内的CCD高清摄相头能够输出一组视频信号和数字图像信号,虽然视频信号能够直接在监视器显示,但是输出的数字图像信号占用存储空间太大,不便于进行传输。本文设计了一种基于FPGA的数字图像压缩卡。 在过去的十几年中,国际标准化组织制订了一系列的国际视频编码标准并广泛应用到各种领域。It.264/AVC是ITU-T和ISO联合推出的新标准,采用了近几年视频编码方面的先进技术,以较高编码效率和网络友好性成为新一代国际视频编码标准。 新发展的H.264/AVC比原有的视频编码标准大幅度提高了编码效率,但其运算复杂度也大大增加,本文简要分析了H.264/AVC的复杂度及其优化的途径,给出了主要模块的优化算法实验结果。 H.264/AVC仍基于以前视频编码标准的运动补偿混合编码方案,主要不同有:增强的运动预测能力,准确匹配的较小块变换,自适应环内滤波器,增强的熵编码。测试结果表明这些新特征使H.264/AVC编码器提高50%编码效率的同时,增加了一个数量级的复杂度。实际中恰当地使用H.264/AVC编码工具可以较低的实现复杂度得到与复杂配置相当的编码效率。故实际编码系统开发需要在运算复杂性和编码效率之间进行折衷、兼顾考虑。H.264/AVC引入的新编码特征既增加基本模块的复杂度,也成倍增加算法的复杂度。针对它们的作用和实现方法的不同,可采用不同的硬件实现方法。本文基于上述思路进行优化,具体的工作包括:针对去块滤波的复杂性,本文提出一种适合硬件实现的算法,使其在节省了资源的同时,很好的达到了标准所定义的性能。针对变换量化的复杂性,本文提出一种既满足整体的硬件流水结构,又极大的降低了硬件资源的实现方法。针对码率控制的实现,本文提出了一种有别于传统实现方式的算法,在保证实时性的同时,极大的提高了编码器的性能。本文基于上述算法还进行Baseline Profile编码器的研究,给出了一种实时编码器结构,实现了对高清图像格式(720P)的实时编码,并将其和当前业界先进水平进行了对比,表明本文所实现得结构能够达到当前业界的先进水平。
上传时间: 2013-07-23
上传用户:yepeng139
随着信息技术和计算机技术的飞速发展,数字信号处理已经逐渐发展成一门关键的技术科学。图像处理作为一种重要的现代技术,己经在通信、航空航天、遥感遥测、生物医学、军事、信息安全等领域得到广泛的应用。图像处理特别是高分辨率图像实时处理的实现技术对相关领域的发展具有深远意义。另外,现场可编程门阵列FPGA和高效率硬件描述语言Verilog HDL的结合,大大变革了电子系统的设计方法,加速了系统的设计进程,为图像压缩系统的实现提供了硬件支持和软件保障。 本文主要包括以下几个方面的内容: (1)结合某工程的具体需求,设计了一种基于FPGA的图像压缩系统,核心硬件选用XILINX公司的Virtex-Ⅱ Pro系列FPGA芯片,存储器件选用MICRON公司的MT48LC4M16A2SDRAM,图像压缩的核心算法选用近无损压缩算法JPEG-LS。 (2)用Verilog硬件描述语言实现了JPEG-LS标准中的基本算法,为课题组成员进行算法改进提供了有力支持。 (3)用Verilog硬件描述语言设计并实现了SDRAM控制器模块,使核心压缩模块能够方便灵活地访问片外存储器。 (4)构建了图像压缩系统的测试平台,对实现的SDRAM控制器模块和JPEG-LS基本算法模块进行了软件仿真测试和硬件测试,验证了其功能的正确性。
上传时间: 2013-04-24
上传用户:stampede