在信号的产生、传输、接收过程当中,必定会遭受外部环境扰动和内部设备噪声的影响,为获得需求信号或状态的最有效估计,要排除无用干扰,这就叫做滤波。“滤波”的术语在无线电领域首先出现。由于随机信号功率谱的确定性,有用信号和无用信号必定不同,从而可以根据其差异来设计滤波器。1960年,卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文(A New Approach to Linear Filtering and Prediction Problems)。在这篇文章里,一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态,甚至能估计将来的状态,即使并不知道模型的确切性质。其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。