虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

内核模式

  • LPC2470--ARM7TDMI-STM内核的16_32位

    LPC2470是NXP半导体公司针对各种高级通信、高质量图像显示等广泛应用场合而设计的一款具有极高集成度并且以ARM7TDMI-S为内核的微控制器,LPC2470微控制器没有Flash。LPC2470带有实时调试接口,包括JTAG和嵌入式跟踪,可以执行32位ARM指令和16位Thumb指令。

    标签: TDMI-STM 2470 LPC ARM

    上传时间: 2014-12-27

    上传用户:zhf01y

  • 基于ARM926EJ-S内核的低功耗ARM

    TI半导体针对工业应用推出了基于ARM926EJ-S内核的低功耗ARM9处理器AM17xx和AM18xx。其中,AM17xx 和OMAPL137在软件和引脚上兼容;AM18xx 和OMAPL138在软件和引脚上兼容。基于本系列处理器,用户可快速开发出具有强壮可靠操作系统、丰富用户接口、高性能的处理能力的设备。

    标签: ARM EJ-S 926 内核

    上传时间: 2013-10-19

    上传用户:9牛10

  • HHARM9200移植2.6内核移植文档

    HHARM9200移植2.6内核移植文档

    标签: HHARM 9200 2.6 移植

    上传时间: 2013-11-01

    上传用户:yelong0614

  • ARM处理器的工作模式

    ARM处理器的工作模式 ARM处理器状态    ARM微处理器的工作状态一般有两种,并可在两种状态之间切换:第一种为ARM状态,此时处理器执行32位的字对齐的ARM指令;第二种为Thumb状态,此时处理器执行16位的、半字对齐的Thumb指令。在程序的执行过程中,微处理器可以随时在两种工作状态之间切换,并且,处理器工作状态的转变并不影响处理器的工作模式和相应寄存器中的内容。但ARM微处理器在开始执行代码时,应该处于ARM状态。  ARM处理器状态    进入Thumb状态:当操作数寄存器的状态位(位0)为1时,可以采用执行BX指令的方法,使微处理器从ARM状态切换到Thumb状态。此外,当处理器处于Thumb状态时发生异常(如IRQ、FIQ、Undef、Abort、SWI等),则异常处理返回时,自动切换到Thumb状态。    进入ARM状态:当操作数寄存器的状态位为0时,执行BX指令时可以使微处理器从Thumb状态切换到ARM状态。此外,在处理器进行异常处理时,把PC指针放入异常模式链接寄存器中,并从异常向量地址开始执行程序,也可以使处理器切换到ARM状态。ARM处理器模式    ARM微处理器支持7种运行模式,分别为:用户模式(usr):ARM处理器正常的程序执行状态。快速中断模式(fiq):用于高速数据传输或通道处理。外部中断模式(irq):用于通用的中断处理。管理模式(svc):操作系统使用的保护模式。数据访问终止模式(abt):当数据或指令预取终止时进入该模式,可用于虚拟存储及存储保护。系统模式(sys):运行具有特权的操作系统任务。定义指令中止模式(und):当未定义的指令执行时进入该模式,可用于支持硬件协处理器的软件仿真。ARM处理器模式    ARM微处理器的运行模式可以通过软件改变,也可以通过外部中断或异常处理改变。大多数的应用程序运行在用户模式下,当处理器运行在用户模式下时,某些被保护的系统资源是不能被访问的。    除用户模式以外,其余的所有6种模式称之为非用户模式,或特权模式;其中除去用户模式和系统模式以外的5种又称为异常模式,常用于处理中断或异常,以及需要访问受保护的系统资源等情况。ARM寄存器    ARM处理器共有37个寄存器。其中包括:31个通用寄存器,包括程序计数器(PC)在内。这些寄存器都是32位寄存器。以及6个32位状态寄存器。 关于寄存器这里就不详细介绍了,有兴趣的人可以上网找找,很多这方面的资料。异常处理    当正常的程序执行流程发生暂时的停止时,称之为异常,例如处理一个外部的中断请求。在处理异常之前,当前处理器的状态必须保留,这样当异常处理完成之后,当前程序可以继续执行。处理器允许多个异常同时发生,它们将会按固定的优先级进行处理。当一个异常出现以后,ARM微处理器会执行以下几步操作:进入异常处理的基本步骤:将下一条指令的地址存入相应连接寄存器LR,以便程序在处理异常返回时能从正确的位置重新开始执行。将CPSR复制到相应的SPSR中。根据异常类型,强制设置CPSR的运行模式位。强制PC从相关的异常向量地址取下一条指令执行,从而跳转到相应的异常处理程序处。如果异常发生时,处理器处于Thumb状态,则当异常向量地址加载入PC时,处理器自动切换到ARM状态。 ARM微处理器对异常的响应过程用伪码可以描述为: R14_ = Return LinkSPSR_= CPSRCPSR[4:0] = Exception Mode NumberCPSR[5] = 0 ;当运行于 ARM 工作状态时If == Reset or FIQ then;当响应 FIQ 异常时,禁止新的 FIQ 异常CPSR[6] = 1PSR[7] = 1PC = Exception Vector Address异常处理完毕之后,ARM微处理器会执行以下几步操作从异常返回:将连接寄存器LR的值减去相应的偏移量后送到PC中。将SPSR复制回CPSR中。若在进入异常处理时设置了中断禁止位,要在此清除。

    标签: ARM 处理器 工作模式

    上传时间: 2013-11-15

    上传用户:hanbeidang

  • 基于端口模式的CY7C68013固件程序设计

    本文介绍了基于USB单片机的弹载测量系统地面测试台的固件程序设计方法。地面测试台用来对弹载数据记录装置进行自检,在本测试台上采用EZ-USB FX2系列单片机CY7C68013来实现上位机与地面测试台间的通信,固件程序的功能包括产生测试台状态信号、下载各种信号源数据及进行实时监测数据回读。文中通过测试台的工程实例,详细介绍了端口模式下固件程序的编写流程,并给出了部分程序代码。

    标签: C68013 68013 CY7 CY

    上传时间: 2013-10-30

    上传用户:thesk123

  • 基于双模式USB接口的便携式比色计设计

    本文设计一种以C8051F020 单片机为处理器,双模式USB 为接口的比色计仪器。该仪器可以工作在USB 设备和主机两种模式。在设备模式下,能直接与计算机进行数据通信;在主机模式下,能读写U盘,通过U 盘进行数据的传输。仪器采用双USB 插座,由单片机判断确定设备的工作方式。

    标签: USB 双模式 便携式 接口

    上传时间: 2013-11-01

    上传用户:ZZJ886

  • MSP430系列flash型超低功耗16位单片机

    MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录  第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名

    标签: flash MSP 430 超低功耗

    上传时间: 2014-04-28

    上传用户:sssnaxie

  • 世界著名单片机厂家简介

    世界著名厂家单片机简介1.Motorola 单片机:Motorola是世界上最大的单片机厂商,品种全,选择余地大,新产品多,在8位机方面有68HC05和升级产品68HC08,68HC05有30多个系列200多个品种,产量超过20亿片.8位增强型单片机68HC11也有30多个品种,年产量1亿片以上,升级产品有68HC12.16位单片机68HC16也有十多个品种.32位单片机683XX系列也有几十个品种.近年来以PowerPC,Codfire,M.CORE等作为CPU,用DSP作为辅助模块集成的单片机也纷纷推出,目前仍是单片机的首选品牌.Motorola单片机特点之一是在同样的速度下所用的时钟较Intel类单片机低的多因而使得高频噪声低,抗干扰能力强,更适合用于工控领域以及恶劣环境.Motorola 8位单片机过去策略是掩膜为主,最近推出OTP计划以适应单片机的发展,在32位机上,M.CORE在性能和功耗上都胜过ARM7.2.Microchip 单片机:Microchip 单片机是市场份额增长最快的单片机.他的主要产品是16C系列8位单片机,CPU采用RISC结构,仅33条指令,运行速度快,且以低价位著称,一般单片机价格都在1美元以下.Microchip 单片机没有掩膜产品,全部都是OTP器件(现已推出FLASH型单片机).Microchip强调节约成本的最优化设计,是使用量大,档次低,价格敏感的产品.3.Scenix单片机:Scenix单片机的I/O模块最有创意.I/O模块的集成与组合技术是单片机技术不可缺少的重要方面.除传统的I/O功能模块如并行I/O,URT,SPI,I2C,A/D,PWM,PLL,DTMF等,新的I/O模块不断出现,如USB,CAN,J1850,最具代表的是Motorola 32位单片机,它集成了包括各种通信协议在内的I/O模块,而Scenix单片机在I/O模块的处理上引入了虚拟I/O的概念. Scenix单片机采用了RISC结构的CPU,使CPU最高工作频率达50MHz.运算速度接近50MIPS.有了强有力的CPU,各种I/O功能便可以用软件的办法模拟.单片机的封装采用20/28引脚.公司提供各种I/O的库函数,用于实现各种I/O模块的功能.这些软件完成的模块包括多路UART,多种A/D,PWM,SPI,DTMF,FSK,LCD驱动等,这些都是通常用硬件实现起来相当复杂的模块.4.NEC单片机:NEC单片机自成体系,以8位机78K系列产量最高,也有16位,32位单片机.16位单片机采用内部倍频技术,以降低外时钟频率.有的单片机采用内置操作系统.NEC的销售策略注重服务大客户,并投入相当大的技术力量帮助大客户开发新产品.5.东芝单片机:东芝单片机从4位倒64位,门类齐全.4位机在家电领域仍有较大市场.8位机主要有870系列,90系列等.该类单片机允许使用慢模式,采用32KHz时钟功耗低至10uA数量级.CPU内部多组寄存器的使用,使得中断响应与处理更加快捷.东芝公司的32位机采用MIPS3000 ARISC的CPU结构,面向VCD,数字相机,图象处理市场.6.富士通单片机:富士通也有8位,16位和32位单片机,但是8位机使用的是16位的CPU内核.也就是说8位机与16位机指令相同,使得开发比较容易.8位机有名是MB8900系列,16位机有MB90系列.富士通注重服务大公司,大客户,帮助大客户开发产品.7.Epson 单片机:Epson公司以擅长制造液晶显示器著称,故Epson单片机主要为该公司生产的LCD配套.其单片机的LCD驱动做的特别好.在低电压,低功耗方面也很有特色.目前0.9V供电的单片机已经上市,不久LCD显示手表将使用0.5V供电.

    标签: 名单 片机

    上传时间: 2014-12-28

    上传用户:leyesome

  • 如何设置使SPMC75F2413A进入节电模式

    SPMC75低功耗操作:本应用例介绍如何设置使SPMC75F2413A进入节电模式。1.2 模式简介SPMC75F2413A有标准模式和两种节电模式(等待模式和就绪模式),相应功能如下:􀂾 标准模式(Normal)芯片在标准模式下运行耗电最大,所有的外设都可用。􀂾 等待模式(Wait)等待模式下,只有CPU掉电停止工作以降低功耗。其它外设保持着先前的状态并且功能可用。一旦唤醒,CPU将继续工作,执行接下去的指令。􀂾 就绪模式(Standby)就绪模式下所有的模块都变为无效,此时功耗达到最小。唤醒后,CPU复位并回到标准运行模式。其它外设可以通过软件分别设置关闭。就绪模式下所有功能都会关闭,只有系统时钟仍在工作。如果按键唤醒功能为有效,这两种模式都可以通过按键唤醒。具体唤醒源的分类及唤醒功能的介绍请参考《SPMC75F2413A编程指南》。【注意】如果MCP定时器3或定时器4已经处于PWM输出模式时,芯片不会进入等待或就绪模式。同样在仿真模式下也无法进入等待或就绪模式。

    标签: 2413A F2413 SPMC 2413

    上传时间: 2013-11-20

    上传用户:ming52900

  • 时钟和低功耗模式

    时钟和低功耗模式片内集成有PLL(锁相环)电路。外接的基准晶体+PLL(锁相环)电路共同组成系统时钟电路。有关引脚:XTAL1/CLKIN:外接的基准晶体到片内振荡器输入引脚;如使用外部振荡器,外部振荡器的输出必须接该脚。XTAL2:片内PLL振荡器输出引脚;CLKOUT/IOPE0:该脚可作为时钟输出或通用IO脚;可用来输出CPU时钟或看门狗定时器时钟;由系统控制状态寄存器(SCSR1)中的位14决定。

    标签: 时钟 低功耗 模式

    上传时间: 2013-10-24

    上传用户:1159797854