虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

信号解调器

  • 变频器控制系统中的干扰与抗干扰

    随着变频器的广泛使用,系统的抗干扰技术变得越来越重要,其中接地是抑制干扰,提高系统电磁兼容性能的重要手段之一。正确的接地可以使系统有效地抑制外来的干扰,同时又能有效地降低系统本身对外的电磁骚扰。在实际应用中,由于系统电源的零线(中线)、地线(保护接地线和系统接地线)不分,系统的屏蔽地(控制信号的屏蔽地和主电路导线的屏蔽地)连接混乱,大大降低了系统的稳定性和可靠性。

    标签: 变频器 控制系统 干扰 抗干扰

    上传时间: 2013-11-10

    上传用户:小宝爱考拉

  • 两线制420mA变送器的电路设计

      工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。这种将物理量转换成电信号的设备称为变送器。工业上最广泛采用的是用4~20mA电流来传输模拟量。   采用电流信号的原因是不容易受干扰。并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。常取2mA作为断线报警值。

    标签: 420 mA 两线制 变送器

    上传时间: 2013-11-08

    上传用户:diets

  • 光电隔离器6N137应用

     6N137的结构原理如图1所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。

    标签: 6N137 光电隔离器

    上传时间: 2014-03-24

    上传用户:skhlm

  • 38V/100A可直接并联大功率AC/DC变换器

    38V/100A可直接并联大功率AC/DC变换器 随着电力电子技术的发展,电源技术被广泛应用于计算机、工业仪器仪表、军事、航天等领域,涉及到国民经济各行各业。特别是近年来,随着IGBT的广泛应用,开关电源向更大功率方向发展。研制各种各样的大功率,高性能的开关电源成为趋势。某电源系统要求输入电压为AC220V,输出电压为DC38V,输出电流为100A,输出电压低纹波,功率因数>0.9,必要时多台电源可以直接并联使用,并联时的负载不均衡度<5%。   设计采用了AC/DC/AC/DC变换方案。一次整流后的直流电压,经过有源功率因数校正环节以提高系统的功率因数,再经半桥变换电路逆变后,由高频变压器隔离降压,最后整流输出直流电压。系统的主要环节有DC/DC电路、功率因数校正电路、PWM控制电路、均流电路和保护电路等。 1 有源功率因数校正环节 由于系统的功率因数要求0.9以上,采用二极管整流是不能满足要求的,所以,加入了有源功率因数校正环节。采用UC3854A/B控制芯片来组成功率因数电路。UC3854A/B是Unitrode公司一种新的高功率因数校正器集成控制电路芯片,是在UC3854基础上的改进。其特点是:采用平均电流控制,功率因数接近1,高带宽,限制电网电流失真≤3%[1]。图1是由UC3854A/B控制的有源功率因数校正电路。   该电路由两部分组成。UC3854A/B及外围元器件构成控制部分,实现对网侧输入电流和输出电压的控制。功率部分由L2,C5,V等元器件构成Boost升压电路。开关管V选择西门康公司的SKM75GB123D模块,其工作频率选在35kHz。升压电感L2为2mH/20A。C5采用四个450V/470μF的电解电容并联。因为,设计的PFC电路主要是用在大功率DC/DC电路中,所以,在负载轻的时候不进行功率因数校正,当负载较大时功率因数校正电路自动投入使用。此部分控制由图1中的比较器部分来实现。R10及R11是负载检测电阻。当负载较轻时,R10及R11上检测的信号输入给比较器,使其输出端为低电平,D2导通,给ENA(使能端)低电平使UC3854A/B封锁。在负载较大时ENA为高电平才让UC3854A/B工作。D3接到SS(软启动端),在负载轻时D3导通,使SS为低电平;当负载增大要求UC3854A/B工作时,SS端电位从零缓慢升高,控制输出脉冲占空比慢慢增大实现软启动。 2 DC/DC主电路及控制部分分析 2.1 DC/DC主电路拓扑 在大功率高频开关电源中,常用的主变换电路有推挽电路、半桥电路、全桥电路等[2]。其中推挽电路的开关器件少,输出功率大,但开关管承受电压高(为电源电压的2倍),且变压器有六个抽头,结构复杂;全桥电路开关管承受的电压不高,输出功率大,但是需要的开关器件多(4个),驱动电路复杂。半桥电路开关管承受的电压低,开关器件少,驱动简单。根据对各种拓扑方案的工程化实现难度,电气性能以及成本等指标的综合比较,本电源选用半桥式DC/DC变换器作为主电路。图2为大功率开关电源的主电路拓扑图。

    标签: 100 38 AC DC

    上传时间: 2013-11-13

    上传用户:ukuk

  • 基于MSC-51单片机的智能压力变送器

    随着工业应用对信号检测与传输的要求不断提高,新型智能仪表将在市场中占有越来越重要的地位。本文在分析压力变送器基本工作原理的基础上,针对新形势下的生产要求,设计了基于MSC-51单片机的智能压力变送器的数据采集电路、看门狗电路以及接口电路。并设计了相应的数据采集算法、通信协议以及其他软件功能。

    标签: MSC 51 单片机 压力变送器

    上传时间: 2014-01-22

    上传用户:lliuhhui

  • 基于单片机的结晶器钢水液位检测系统设计

    为保证钢水连铸中结晶器内液位稳定,提出了一种基于单片机的钢水液位检测系统方案。该系统通过滤波、放大、线性化等一系列处理,将由涡流型传感器采集的微弱信号变为0~5 V电压信号。经过DA变换得到4~20 mA电流信号供PLC使用。系统的测量精度为±2 mm、量程为0~150 mm。本系统成本较低,实用性较强,已经在实际生产中投入使用,并取得良好的效果。

    标签: 单片机 结晶器 液位检测 系统设计

    上传时间: 2013-10-12

    上传用户:zhaoq123

  • 基于单片机的频率_电流变送器

    针对模拟型频率/电流变送器在低频段存在精度差、响应速度慢的问题,提出了一种基于AT89S52单片机的频率/电流变送器设计方案,并完成了系统的软硬件设计。该系统主要由M/T法测频电路、D/A转换器、V/I转换电路、RS232通讯接口组成,能够对频率进行高精度测量,并将其转换成4-20 mA标准信号。实验证明,所设计的系统运行稳定,人机对话方便,在整个测量频段,系统响应快、精度高、无纹波,达到了设计要求。

    标签: 单片机 频率 电流变送器

    上传时间: 2013-10-13

    上传用户:432234

  • 基于单片机MSP430F147的自动寻边器下位机设计

    为了适应环境的变化,运用单片机MSP430F147设计一个自动寻边器,给出了寻边器的下位机电路设计方案,经过多次训练后得出交界区的最优参考电压,与寻边器采集的电压信号相比较,判断得出是否已经到达交界处.此寻边器在机电行业不同环境下可完成现场工件检测。

    标签: 430F F147 MSP 430

    上传时间: 2013-11-01

    上传用户:84425894

  • 基于STM32的LF RFID阅读器研究

    基于STM32的LF RFID识别系统,可以对电子标签卡进行检测、识别,并对识别的信息进行相应的处理。阅读器硬件由控制模块、功率模块、天线、检波电路和信号转换电路组成。控制模块以STM32为核心,利用STM32具有死区设置的互补PWM模块对MOSFET对管进行控制来实现天线的功率输出,同时利用STM32对检波后的信号进行捕获并解码。实际应用表明,该系统具有实现简单、可靠性高等特点。

    标签: RFID STM 32 阅读器

    上传时间: 2013-11-19

    上传用户:a471778

  • MCS-51系列单片机实用接口技术

    本书全面、系统地介绍了MCS-51系列单片机应用系统的各种实用接口技术及其配置。   内容包括:MCS-51系列单片机组成原理:应用系统扩展、开发与调试;键盘输入接口的设计及调试;打印机和显示器接口及设计实例;模拟输入通道接口技术;A/D、D/A、接口技术及在控制系统中的应用设计;V/F转换器接口技术、串行通讯接口技术以及其它与应用系统设计有关的实用技术等。   本书是为满足广大科技工作者从事单片机应用系统软件、硬件设计的需要而编写的,具有内容新颖、实用、全面的特色。所有的接口设计都包括详细的设计步骤、硬件线路图及故障分析,并附有测试程序清单。书中大部分接口软、硬件设计实例都是作者多年来从事单片机应用和开发工作的经验总结,实用性和工程性较强,尤其是对应用系统中必备的键盘、显示器、打印机、A/D、D/A通讯接口设计、模拟信号处理及开发系统应用举例甚多,目的是让将要开始和正在从事单片机应用开发的科研人员根据自己的实际需要来选择应用,一书在手即可基本完成单片机应用系统的开发工作。   本书主要面向从事单片机应用开发工作的广大工程技术人员,也可作为大专院校有关专业的教材或教学参考书。 第一章MCS-51系列单片机组成原理   1.1概述   1.1.1单片机主流产品系列   1.1.2单片机芯片技术的发展概况   1.1.3单片机的应用领域   1.2MCS-51单片机硬件结构   1.2.1MCS-51单片机硬件结构的特点   1.2.2MCS-51单片机的引脚描述及片外总线结构   1.2.3MCS-51片内总体结构   1.2.4MCS-51单片机中央处理器及其振荡器、时钟电路和CPU时序   1.2.5MCS-51单片机的复位状态及几种复位电路设计   1.2.6存储器、特殊功能寄存器及位地址空间   1.2.7输入/输出(I/O)口   1.3MCS-51单片机指令系统分析   1.3.1指令系统的寻址方式   1.3.2指令系统的使用要点   1.3.3指令系统分类总结   1.4串行接口与定时/计数器   1.4.1串行接口简介   1.4.2定时器/计数器的结构   1.4.3定时器/计数器的四种工作模式   1.4.4定时器/计数器对输入信号的要求   1.4.5定时器/计数器的编程和应用   1.5中断系统   1.5.1中断请求源   1.5.2中断控制   1.5.3中断的响应过程   1.5.4外部中断的响应时间   1.5.5外部中断方式的选择   第二章MCS-51单片机系统扩展   2.1概述   2.2程序存贮器的扩展   2.2.1外部程序存贮器的扩展原理及时序   2.2.2地址锁存器   2.2.3EPROM扩展电路   2.2.4EEPROM扩展电路   2.3外部数据存贮器的扩展   2.3.1外部数据存贮器的扩展方法及时序   2.3.2静态RAM扩展   2.3.3动态RAM扩展   2.4外部I/O口的扩展   2.4.1I/O口扩展概述   2.4.2I/O口地址译码技术   2.4.38255A可编程并行I/O扩展接口   2.4.48155/8156可编程并行I/O扩展接口   2.4.58243并行I/O扩展接口   2.4.6用TTL芯片扩展I/O接口   2.4.7用串行口扩展I/O接口   2.4.8中断系统扩展   第三章MCS-51单片机应用系统的开发   3.1单片机应用系统的设计   3.1.1设计前的准备工作   3.1.2应用系统的硬件设计   3.1.3应用系统的软件设计   3.1.4应用系统的抗干扰设计   3.2单片机应用系统的开发   3.2.1仿真系统的功能   3.2.2开发手段的选择   3.2.3应用系统的开发过程   3.3SICE—IV型单片机仿真器   3.3.1SICE-IV仿真器系统结构   3.3.2SICE-IV的仿真特性和软件功能   3.3.3SICE-IV与主机和终端的连接使用方法   3.4KHK-ICE-51单片机仿真开发系统   3.4.1KHK—ICE-51仿真器系统结构   3.4.2仿真器系统功能特点   3.4.3KHK-ICE-51仿真系统的安装及其使用   3.5单片机应用系统的调试   3.5.1应用系统联机前的静态调试   3.5.2外部数据存储器RAM的测试   3.5.3程序存储器的调试   3.5.4输出功能模块调试   3.5.5可编程I/O接口芯片的调试   3.5.6外部中断和定时器中断的调试   3.6用户程序的编辑、汇编、调试、固化及运行   3.6.1源程序的编辑   3.6.2源程序的汇编   3.6.3用户程序的调试   3.6.4用户程序的固化   3.6.5用户程序的运行   第四章键盘及其接口技术   4.1键盘输入应解决的问题   4.1.1键盘输入的特点   4.1.2按键的确认   4.1.3消除按键抖动的措施   4.2独立式按键接口设计   4.3矩阵式键盘接口设计   4.3.1矩阵键盘工作原理   4.3.2按键的识别方法   4.3.3键盘的编码   4.3.4键盘工作方式   4.3.5矩阵键盘接口实例及编程要点   4.3.6双功能及多功能键设计   4.3.7键盘处理中的特殊问题一重键和连击   4.48279键盘、显示器接口芯片及应用   4.4.18279的组成和基本工作原理   4.4.28279管脚、引线及功能说明   4.4.38279编程   4.4.48279键盘接口实例   4.5功能开关及拨码盘接口设计   第五章显示器接口设计   5.1LED显示器   5.1.1LED段显示器结构与原理   5.1.2LED显示器及显示方式   5.1.3LED显示器接口实例   5.1.4LED显示器驱动技术   5.2单片机应用系统中典型键盘、显示接口技术   5.2.1用8255和串行口扩展的键盘、显示器电路   5.2.2由锁存器组成的键盘、显示器接口电路   5.2.3由8155构成的键盘、显示器接口电路   5.2.4用8279组成的显示器实例   5.3液晶显示LCD   5.3.1LCD的基本结构及工作原理   5.3.2LCD的驱动方式   5.3.34位LCD静态驱动芯片ICM7211系列简介   5.3.4点阵式液晶显示控制器HD61830介绍   5.3.5点阵式液晶显示模块介绍   5.4荧光管显示   5.5LED大屏幕显示器   第六章打印机接口设计   6.1打印机简介   6.1.1打印机的基本知识   6.1.2打印机的电路构成   6.1.3打印机的接口信号   6.1.4打印机的打印命令   6.2TPμP-40A微打与单片机接口设计   6.2.1TPμP系列微型打印机简介   6.2.2TPμP-40A打印功能及接口信号   6.2.3TPμP-40A工作方式及打印命令   6.2.48031与TPμP-40A的接口   6.2.5打印编程实例   6.3XLF微型打印机与单片机接口设计   6.3.1XLF微打简介   6.3.2XLF微打接口信号及与8031接口设计   6.3.3XLF微打控制命令   6.3.4打印机编程   6.4标准宽行打印机与8031接口设计   6.4.1TH3070接口引脚信号及时序   6.4.2与8031的简单接口   6.4.3通过打印机适配器完成8031与打印机的接口   6.4.4对打印机的编程   第七章模拟输入通道接口技术   7.1传感器   7.1.1传感器的分类   7.1.2温度传感器   7.1.3光电传感器   7.1.4湿度传感器   7.1.5其他传感器   7.2模拟信号放大技术   7.2.1基本放大器电路   7.2.2集成运算放大器   7.2.3常用运算放大器及应用举例   7.2.4测量放大器   7.2.5程控增益放大器   7.2.6隔离放大器   7.3多通道模拟信号输入技术   7.3.1多路开关   7.3.2常用多路开关   7.3.3模拟多路开关   7.3.4常用模拟多路开关   7.3.5多路模拟开关应用举例   7.3.6多路开关的选用   7.4采样/保持电路设计   7.4.1采样/保持原理   7.4.2集成采样/保持器   7.4.3常用集成采样/保持器   7.4.4采样保持器的应用举例   7.5有源滤波器的设计   7.5.1滤波器分类   7.5.2有源滤波器的设计   7.5.3常用有源滤波器设计举例   7.5.4集成有源滤波器   第八章D/A转换器与MCS-51单片机的接口设计与实践   8.1D/A转换器的基本原理及主要技术指标   8.1.1D/A转换器的基本原理与分类   8.1.2D/A转换器的主要技术指标   8.2D/A转换器件选择指南   8.2.1集成D/A转换芯片介绍   8.2.2D/A转换器的选择要点及选择指南表   8.2.3D/A转换器接口设计的几点实用技术   8.38位D/A转换器DAC080/0831/0832与MCS-51单片机的接口设计   8.3.1DAC0830/0831/0832的应用特性与引脚功能   8.3.2DAC0830/0831/0832与8031单片机的接口设计   8.3.3DAC0830/0831/0832的调试说明   8.3.4DAC0830/0831/0832应用举例   8.48位D/A转换器AD558与MCS-51单片机的接口设计   8.4.1AD558的应用特性与引脚功能   8.4.2AD558与8031单片机的接口及调试说明   8.4.38位D/A转换器DAC0800系列与8031单片机的接口   8.510位D/A转换器AD7522与MCS-51的硬件接口设计   8.5.1AD7522的应用特性及引脚功能   8.5.2AD7522与8031单片机的接口设计   8.610位D/A转换器AD7520/7530/7533与MCS一51单片机的接口设计   8.6.1AD7520/7530/7533的应用特性与引脚功能   8.6.2AD7520系列与8031单片机的接口   8.6.3DAC1020/DAC1220/AD7521系列D/A转换器接口设计   8.712位D/A转换器DAC1208/1209/1210与MCS-51单片机的接口设计   8.7.1DAC1208/1209/1210的内部结构与引脚功能   8.7.2DAC1208/1209/1210与8031单片机的接口设计   8.7.312位D/A转换器DAC1230/1231/1232的应用设计说明   8.7.412位D/A转换器AD7542与8031单片机的接口设计   8.812位串行DAC-AD7543与MCS-51单片机的接口设计   8.8.1AD7543的应用特性与引脚功能   8.8.2AD7543与8031单片机的接口设计   8.914位D/A转换器AD75335与MCS-51单片机的接口设计   8.9.1AD8635的内部结构与引脚功能   8.9.2AD7535与8031单片机的接口设计   8.1016位D/A转换器AD1147/1148与MCS-51单片机的接口设计   8.10.1AD1147/AD1148的内部结构及引脚功能   8.10.2AD1147/AD1148与8031单片机的接口设计   8.10.3AD1147/AD1148接口电路的应用调试说明   8.10.416位D/A转换器AD1145与8031单片机的接口设计   第九章A/D转换器与MCS-51单片机的接口设计与实践   9.1A/D转换器的基本原理及主要技术指标   9.1.1A/D转换器的基本原理与分类   9.1.2A/D转换器的主要技术指标   9.2面对课题如何选择A/D转换器件   9.2.1常用A/D转换器简介   9.2.2A/D转换器的选择要点及应用设计的几点实用技术   9.38位D/A转换器ADC0801/0802/0803/0804/0805与MCS-51单片机的接口设计   9.3.1ADC0801~ADC0805芯片的引脚功能及应用特性   9.3.2ADC0801~ADC0805与8031单片机的接口设计   9.48路8位A/D转换器ADC0808/0809与MCS一51单片机的接口设计   9.4.1ADC0808/0809的内部结构及引脚功能   9.4.2ADC0808/0809与8031单片机的接口设计   9.4.3接口电路设计中的几点注意事项   9.4.416路8位A/D转换器ADC0816/0817与MCS-51单片机的接口设计   9.510位A/D转换器AD571与MCS-51单片机的接口设计   9.5.1AD571芯片的引脚功能及应用特性   9.5.2AD571与8031单片机的接口   9.5.38位A/D转换器AD570与8031单片机的硬件接口   9.612位A/D转换器ADC1210/1211与MCS-51单片机的接口设计   9.6.1ADC1210/1211的引脚功能与应用特性   9.6.2ADC1210/1211与8031单片机的硬件接口   9.6.3硬件接口电路的设计要点及几点说明   9.712位A/D转换器AD574A/1374/1674A与MCS-51单片机的接口设计   9.7.1AD574A的内部结构与引脚功能   9.7.2AD574A的应用特性及校准   9.7.3AD574A与8031单片机的硬件接口设计   9.7.4AD574A的应用调试说明   9.7.5AD674A/AD1674与8031单片机的接口设计   9.8高速12位A/D转换器AD578/AD678/AD1678与MCS—51单片机的接口设计   9.8.1AD578的应用特性与引脚功能   9.8.2AD578高速A/D转换器与8031单片机的接口设计   9.8.3AD578高速A/D转换器的应用调试说明   9.8.4AD678/AD1678采样A/D转换器与8031单片机的接口设计   9.914位A/D转换器AD679/1679与MCS-51单片机的接口设计   9.9.1AD679/AD1679的应用特性及引脚功能   9.9.2AD679/1679与8031单片机的接口设计   9.9.3AD679/1679的调试说明   9.1016位ADC-ADC1143与MCS-51单片机的接口设计   9.10.1ADC1143的应用特性及引脚功能   9.10.2ADC1143与8031单片机的接口设计   9.113位半积分A/D转换器5G14433与MCS-51单片机的接口设计   9.11.15G14433的内部结构及引脚功能   9.11.25G14433的外部电路连接与元件参数选择   9.11.35G14433与8031单片机的接口设计   9.11.45G14433的应用举例   9.124位半积分A/D转换器ICL7135与MCS—51单片机的接口设计   9.12.1ICL7135的内部结构及芯片引脚功能   9.12.2ICL7135的外部电路连接与元件参数选择   9.12.3ICL7135与8031单片机的硬件接口设计   9.124ICL7135的应用举例   9.1312位双积分A/D转换器ICL7109与MCS—51单片机的接口设计   9.13.1ICL7109的内部结构与芯片引脚功能   9.13.2ICL7109的外部电路连接与元件参数选择   9.13.3ICL7109与8031单片机的硬件接口设计   9.1416位积分型ADC一ICL7104与MCS-51单片机的接口设计   9.14.1ICL7104的主要应用特性及引脚功能   9.14.2ICL7104与8031单片机的接口设计   9.14.3其它积分型A/D转换器简介   第十章V/F转换器接口技术   10.1V/F转换的特点及应用环境   10.2V/F转换原理及用V/F转换器实现A/D转换的方法   10.2.1V/F转换原理   10.2.2用V/F转换器实现A/D转换的方法   10.3常用V/F转换器简介   10.3.1VFC32   10.3.2LMX31系列V/F转换器   10.3.3AD650   10.3.4AD651   10.4V/F转换应用系统中的通道结构   10.5LM331应用实例   10.5.1线路原理   10.5.2软件设计   10.6AD650应用实例   10.6.1AD650外围电路设计   10.6.2定时/计数器(8253—5简介)   10.6.3线路原理   10.6.4软件设计   第十一章串行通讯接口技术   11.1串行通讯基础   11.1.1异步通讯和同步通讯   11.1.2波特率和接收/发送时钟   11.1.3单工、半双工、全双工通讯方式   11.14信号的调制与解调   11.1.5通讯数据的差错检测和校正   11.1.6串行通讯接口电路UART、USRT和USART   11.2串行通讯总线标准及其接口   11.2.1串行通讯接口   11.2.2RS-232C接口   11.2.3RS-449、RS-422、RS-423及RS485   11.2.420mA电流环路串行接口   11.3MCS-51单片机串行接口   11.3.1串行口的结构   11.3.2串行接口的工作方式   11.3.3串行通讯中波特率设置   11.4MCS-51单片机串行接口通讯技术   11.4.1单片机双机通讯技术   11.4.2单片机多机通讯技术   11.5IBMPC系列机与单片机的通讯技术   11.5.1异步通讯适配器   11.5.2IBM-PC机与8031双机通讯技术   11.5.3IBM—PC机与8031多机通讯技术   11.6MCS-51单片机串行接口的扩展   11.6.1Intel8251A可编程通讯接口   11.6.2扩展多路串行口的硬件设计   11.6.3通讯软件设计   第十二章应用系统设计中的实用技术   12.1MCS-51单片机低功耗系统设计   12.1.1CHMOS型单片机80C31/80C51/87C51的组成与使用要点   12.1.2CHMOS型单片机的空闲、掉电工作方式   12.1.3CHMOS型单片机的I/O接口及应用系统实例   12.1.4HMOS型单片机的节电运行方式   12.2逻辑电平接口技术   12.2.1集电极开路门输出接口   12.2.2TTL、HTL、ECL、CMOS电平转换接口   12.3电压/电流转换   12.3.1电压/0~10mA转换   12.3.2电压1~5V/4~20mA转换   12.3.30~10mA/0~5V转换   12.344~20mA/0~5V转换   12.3.5集成V/I转换电路   12.4开关量输出接口技术   12.4.1输出接口隔离技术   12.4.2低压开关量信号输出技术   12.4.3继电器输出接口技术   12.4.4可控硅(晶闸管)输出接口技术   12.4.5固态继电器输出接口   12.4.6集成功率电子开关输出接口   12.5集成稳压电路   12.5.1电源隔离技术   12.5.2三端集成稳压器   12.5.3高精度电压基准   12.6量程自动转换技术   12.6.1自动转换量程的硬件电路   12.6.2自动转换量程的软件设计   附录AMCS-51单片机指令速查表   附录B常用EPROM固化电压参考表   参考文献

    标签: MCS 51 单片机实用 接口技术

    上传时间: 2013-10-15

    上传用户:himbly