虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

保证

  • 基于DSPFPGA的图像识别系统设计与实现.rar

    近年来,图像处理与识别技术得到了迅速的发展。人们已经充分认识到图像处理和识别技术是认识世界、改造世界的重要手段。目前,图像识别技术已应用到很多领域,渗入到各行各业,在医学、公安、交通、工业等领域具有广阔的应用前景。 这篇论文介绍了一种基于DSP+FPGA构架的实时图像识别系统。DSP作为图像识别模块的核心,负责图像识别算法的实现;FPGA作为图像采集模块的核心,负责图像的采集,并且完成预处理工作。图像识别算法的运算量大,并且控制复杂,对系统的性能要求很高。DSP的特殊结构和优良性能很好地满足了系统的需要,而FPGA的高速性和灵活性也保证了系统实时性,并且简化了外围电路,减少了系统设计难度。 系统使用模板匹配和神经网络算法对数字0~9进行识别。模板匹配一般适用于识别规范化的数字、字符等小型字符集(特别是同一字体的字符集)。由于结构比较简单,系统处理能力强,模板匹配的识别速度快并且识别率高,取得很好的效果。神经网络所具有的分布式存储、高容错性、自组织和自学习功能,使其对图像识别问题显示出极大的优越性。 研究表明,在DSP+FPGA的构架上实现的图像识别系统,具有结构灵活、通用性强的特点,适用于模块化设计,有利于提高算法的效率。系统可以充分发挥和结合DSP和FPGA的优势,准确快速地实现图像识别。通过软、硬件的灵活组合,系统可以实现图像处理大部分的相关功能,使之能够运用到工业视觉检测、汽车牌照识别等系统中。

    标签: DSPFPGA 图像识别 系统设计

    上传时间: 2013-06-18

    上传用户:com1com2

  • Hy3100高效DC/DC升压控制器

    Hy3100高效DC/DC升压控制器特点• 低电压工作:可保证以0.9 V (IOUT = 1 mA)启动• 占空系数

    标签: 3100 DC Hy 升压控制器

    上传时间: 2013-04-24

    上传用户:hsj3927

  • 基于DSP/FPGA的多波形数字脉冲压缩系统硬件的研究与实现

    现代雷达系统广泛采用脉冲压缩技术,用以解决作用距离与分辨能力之间的矛盾。脉冲压缩是指雷达通过发射宽脉冲,保证足够的最大作用距离,而接收时,采用相应的脉冲压缩法获得窄脉冲以提高距离分辨率的过程。同时,数字信号处理技术的迅猛发展和广泛应用,为雷达脉冲压缩处理的数字化实现提供了可能。 本文主要研究雷达多波形频域数字脉冲压缩系统的硬件系统实现。在匹配滤波理论的指导下,成功研制了基于FPGAEP1K100QC208-1和4片高性能ADSP21160M的多波形频域数字脉冲压缩系统。该系统可处理时宽在42μs以内、带宽在5MHz以下的线性调频信号(LFM),非线性调频信号(NLFM)和Taylor四相码信号,且技术指标完全满足实用系统的设计要求。 本文完成的主要工作和创新之处有:(1)基于双通道模数转换器AD10242设计高精度数据采集电路,为整个脉压系统的工作提供必要的条件。完成了前端模拟信号输入电路的优化和差分输入时钟的产生,以实现高精度采样。 (2)根据协议和脉压系统的工作要求,以基于FPGAEP1K100QC208完成系统控制,使整个脉压系统正确稳定地工作。同时以该FPGA生成双口RAM,实现数据暂存,以匹配采样速率和脉压系统频率。 (3)设计基于4片高性能ADSP21160M的紧耦合并行处理系统,以完成多波形频域数字脉冲压缩的全部运算工作。4片DSP共享外部总线,且各DSP以链路口互连,进行数据通信。各DSP还使用一个链路口连接到接口板DSP,将脉压结果送出。 (4)以一片ADSP21160M和一片EP1K100QC208为核心,设计输出板电路,完成数据对齐、求模和数据向下一级的输出,并产生模拟输出。 (5)调试并改进处理板和输出板。

    标签: FPGA DSP 多波形 压缩系统

    上传时间: 2013-06-11

    上传用户:qq277541717

  • 基于FPGA的8051 IP核的设计

    本文探索了自主系统CPU设计方法和经验,同时对80C51产品进行了必要的改进。 文章采用XILINX公司的Virtex-ⅡPro系列FPGA芯片,在相关EDA软件平台的支持下进行基于FPGA的8051芯片的设计。在已公开的8051源代码的基础上,对其中的程序存储器、指令存储器做了较大幅度的修改,增加了定时器、串行收发器的软件编写,VerilogHDL语句共6000余行(见附录光盘)。在设计中笔者特别的注意了源代码中组合逻辑循环的去除,时序设计中合理确定建立时间和保持时间,保证了工作频率的提高(工作频率由12MHz提高到约30MHz),串行收发器的下载实验验证了该模块频率的提高。对设计高频CPU提供了有益的借鉴。本文利用Modelsim进行了功能仿真和后仿真,利用Synplify进行了综合,仿真和综合结果达到了设计的预期要求,并为下载和组成系统作了准备工作(设计了外围电路的PCB板图)。

    标签: FPGA 8051 IP核

    上传时间: 2013-06-28

    上传用户:梧桐

  • 图象压缩系统中熵编解码器的FPGA设计及实现

    随着移动终端、多媒体、Internet网络、通信,图像扫描技术的发展,以及人们对图象分辨率,质量要求的不断提高,用软件压缩难以达到实时性要求,而且会带来因传输大量原始图象数据带来的带宽要求,因此采用硬件实现图象压缩已成为一种必然趋势。而熵编码单元作为图像变换,量化后的处理环节,是图像压缩中必不可少的部分。研究熵编解码器的硬件实现,具有广阔的应用背景。本文以星载视频图像压缩的硬件实现项目为背景,对熵编码器和解码器的硬件实现进行探讨,给出了并行熵编码和解码器的实现方案。熵编解码器中的难点是huffman编解码器的实现。在设计并行huffman编码方案时通过改善Huffman编码器中变长码流向定长码流转换时的控制逻辑,避免了因数据处理不及时造成数据丢失的可能性,从而保证了编码的正确性。而在实现并行的huffman解码器时,解码算法充分利用了规则化码书带来的码字的单调性,及在特定长度码字集内码字变化的连续性,将并行解码由模式匹配转换为算术运算,提高了存储器的利用率、系统的解码效率和速度。在实现并行huffman编码的基础上,结合针对DC子带的预测编码,针对直流子带的游程编码,能够对图像压缩系统中经过DWT变换,量化,扫描后的数据进行正确的编码。同时,在并行huffman解码基础上的熵解码器也可以解码出正确的数据提供给解码系统的后续反量化模块,进一步处理。在本文介绍的设计方案中,按照自顶向下的设计方法,对星载图像压缩系统中的熵编解码器进行分析,进而进行逻辑功能分割及模块划分,然后分别实现各子模块,并最终完成整个系统。在设计过程中,用高级硬件描述语言verilogHDL进行RTL级描述。利用了Altera公司的QuartusII开发平台进行设计输入、编译、仿真,同时还采用modelsim仿真工具和symplicity的综合工具,验证了设计的正确性。通过系统波形仿真和下板验证熵编码器最高频率可以达到127M,在62.5M的情况下工作正常。而熵解码器也可正常工作在62.5M,吞吐量可达到2500Mbps,也能满足性能要求。仿真验证的结果表明:设计能够满足性能要求,并具有一定的使用价值。

    标签: FPGA 图象压缩

    上传时间: 2013-05-19

    上传用户:吴之波123

  • 基于DSP和FPGA的四关节实验室机器人控制器的研制

    在机器人学的研究领域中,如何有效地提高机器人控制系统的控制性能始终是研究学者十分关注的一个重要内容。在分析了工业机器人的发展历程和机器人控制系统的研究现状后,本论文的主要目标是针对四关节实验室机器人特有的机械结构和数学模型,建立一个新型全数字的基于DSP和FPGA的机器人位置伺服控制系统的软、硬件平台,实现对四关节实验室机器人的精确控制。 本论文从实际情况出发,首先分析了所研究的四关节实验室机器人的本体结构,并对其抽象简化得到了它的运动学数学模型。在明确了实现机器人精确位置伺服控制的控制原理后,我们对机器人控制系统的诸多可行性方案进行了充分论证,并最终决定采用了三级CPU控制的控制体系结构:第一级CPU为上位计算机,它实现对机器人的系统管理、协调控制以及完成机器人实时轨迹规划等控制算法的运算;第二级CPU为高性能的DSP处理器,它辅之以具有高速并行处理能力的FPGA芯片,实现了对机器人多个关节的高速并行驱动;第三级CPU为交流伺服驱动处理器,它实现了机器人关节伺服电机的精确三闭环误差驱动控制,以及电机的故障诊断和自动保护等功能。此外,我们采用比普通UART速度快得多的USB来实现上位计算机.与下位控制器之间的数据通信,这样既保证了两者之间连接方便,又有效的提高了控制系统的通信速度和可靠性。 机器人系统的软件设计包括两个部分:一是采用VC++实现的上位监控软件系统,它主要负责机器人实时轨迹规划等控制算法的运算,同时完成用户与机器人系统之间的信息交互;二是采用C语言实现的下位DSP控制程序,它主要负责接收上位监控系统或者下位控制箱发送的控制信号,实现对机器人的实时驱动,同时还能够实时的向上位监控系统或者下位控制箱反馈机器人的当前状态信息。 研究开发出来的四关节实验室机器人控制器具有控制实时性好、定位精度高、运行稳定可靠的特点,它允许用户通过上位控制计算机实现对机器人的各种设定作业的控制,也可以让用户通过机器人控制箱现场对机器人进行回零、示教等各项操作。

    标签: FPGA DSP 实验室 机器人控制器

    上传时间: 2013-06-11

    上传用户:edisonfather

  • MSP430问题总汇

    MSP430相关,详细对MSP430上遇到的问题进行说明,不保证都有,但对大部分能找到

    标签: MSP 430

    上传时间: 2013-06-13

    上传用户:huazi

  • 基于ARM&WinCE的刀具状态监测数据处理平台设计

    刀具状态的精确监测是保证金属切削加工过程顺利进行的关键,因此研制准确、可靠且成本低廉的刀具状态监测系统一直是研究人员所追求的目标。在众多刀具状态监测方法中,声发射监测技术,以其信号直接来源于切削区,具有灵敏度高、响应快,能有效避开低频干扰等优点,非常适用于刀具状态监测。 围绕如何获取高信噪比的刀具状态信号特征,拟结合嵌入式技术,构建准确、稳定、低成本的实时刀具状态监测与辨识系统。给出了基于ARM& WinCE平台的刀具状态监测系统数据处理平台软硬件初步解决方案。作为课题的前期研究本文主要进行了以下工作: (1)分析了声发射信号与刀具磨损状态的相关性,验证了利用声发射信号进行刀具状态监测的可行性; (2)确定刀具状态监测系统的整体方案,包括系统整体架构、软硬件设计方案。ARM& WinCE构成本系统的数据处理与显示平台,EVC为图形界面应用程序开发工具; (3)构建了数据处理与显示平台。选用MagicARM2410实验开发平台,简化了硬件设计;根据系统的功能需求,进行ARM平台的接口设计、操作系统和必要的驱动程序的剪裁及移植; (4)完成了数据处理与显示应用软件设计。系统软件包括界面模块、数据管理模块、数据处理模块、图形及结果显示模块、参数设置模块等,其中数据处理模块主要包括小波消噪、小波包分解特征提取等算法; (5)实现了ARM& WinCE平台与PC机的实时可靠通讯。

    标签: WinCE ARM 刀具 状态监测

    上传时间: 2013-04-24

    上传用户:lanjisu111

  • 基于ARMDSP的双足机器人导航控制系统的研究

    双足机器人是一个多自由度、多变量、非线性的复杂动力学系统。其控制平台的研究往往涉及嵌入式技术、传感器技术、步态规划、路径导航、人工智能、自动化控制等多种理论与技术,体现了信息科学和人工智能技术的最新成果,应用领域广大,具有重要的研究价值。其中,双足机器人导航控制系统是双足机器人控制平台研究中的重点和难点,将在自动驾驶、未知区域的探索、危险环境作业、核电站的维护等领域中发挥极大的作用。 本文以双足机器人导航控制系统的设计为研究背景,结合嵌入式系统开发的关键技术,主要论述了两个核心内容:一是双足机器人导航决策系统的设计。该系统是基于一种新式的ARM&DSP主从控制模式下的设计。该设计借助内外传感器系统的反馈,通过对多传感器信息的融合与处理,在导航决策算法的作用下,实现双足机器人在未知环境下平滑的自主导航。二是为增强双足机器人导航的人机交互性和控制系统对突发事件的处理能力,在基于MiniGUI的系统平台上设计了双足机器人的导航控制系统界面。论文的主要内容包括: 首先,设计了双足机器人的本体模型,并对双足机器人的步态规划做了理论研究,为步态控制获得理论上的支持。 然后,就双足机器人导航控制平台的搭建做了详细的介绍,并着重对主从控制器间通讯的CAN接口做了详细的设计。 接着,从两个层面设计了导航决策系统,一是根据内部传感器得到的关节信息,比对决策层中的步态规划算法,对关节的运动进行实时的补偿和调整,实现各关节动作的协调,得到标准的步态,保证每一步的稳定和准确。二是对外部传感器获得的外界环境信息进行处理,构建出供决策层使用的外部环境模型,之后在基于模糊神经网络的导航算法的指引下,实现双足机器人对外界环境做出合理、平滑的响应。 最后,介绍了导航控制界面的设计与实现。重点介绍了MiniGUI开发平台的搭建、基于MiniGUI的界面程序的设计以及程序在开发板上的移植,实现了控制界面在双足机器人导航上的应用。

    标签: ARMDSP 双足机器人 导航控制系统

    上传时间: 2013-04-24

    上传用户:527098476

  • 基于ARMLinuz的视频监控系统设计与实现

    视频监控系统是一个集计算机的交互性、多媒体信息的综合性、通信的分布性和监控的实时性等技术于一体的综合系统。随着网络带宽,计算机处理能力和存储容量的快速提高,以及各种实用视频处理技术的出现,视频监控进入了全数字化的网络时代。视频监控系统的核心功能主要包括两大部分,一是视频图像采集和压缩处理,一是图像数据的传输。系统的主要硬件模块分为监控终端和监控控制终端两个部分。 本文设计并实现了一种基于ARM和嵌入式Linux的视频监控系统,该系统主要实现了视频图像的采集压缩和图像数据流基于RTP协议的传输。本系统的核心硬件平台采用韩国SamSung公司的S3C2410微处理器,ARM端作为视频监控终端,PC机作为监控控制终端。ARM端主要承载了图像采集、编码和对图像数据进行RTP打包并传输的功能,PC端主要承载的功能是图像数据的接收、显示和对监控终端的控制、访问。 在视频图像采集和压缩处理部分,利用Video for Linux提供的接口函数,实现了利用摄像头采集图像的过程,并设计实现了V4L视频采集及压缩模块,设计了系统JEPG图像采集和压缩模块和MPEG-4图像采集和压缩模块的具体编程流程和实现过程,并实现了基于这两种编码方式的视频压缩。用Visual C++实现了用户控制终端,可对应JPEG和MPEG-4两种编码方式进行解码并显示。 在图像数据的传输部分,系统采用了RTP协议作为视频数据流传输协议,并实现了视频数据在局域网内的实时性传输。移植了现在比较常用的JRTPLIB源码库,为RTP的实现提供了可调用的库函数,按照MPEG-4数据流的RTP封装格式和流程,设计实现了RTP编程。 最后对系统的功能和性能进行了测试。测试结果显示MPEG-4在保证与JPEG相当的图像质量时,大大减少了传输的数据量。同时,使用RTP协议进行传输,保证了系统的实时性,也保证了图像的传输质量。

    标签: ARMLinuz 视频监控 系统设计

    上传时间: 2013-07-12

    上传用户:wzr0701